/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2023 Arduino SA * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/mphal.h" #include "storage.h" #include "ulpi.h" void NICLAV_board_startup(void) { } void NICLAV_board_pmic_enable(int); void NICLAV_board_early_init(void) { HAL_InitTick(0); // Enable oscillator pin // This is enabled in the bootloader anyway. NICLAV_board_osc_enable(true); // Re/Enable PMIC rails. NICLAV_board_pmic_enable(true); #if MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE // The Arduino/mbed bootloader uses the MPU to protect sector 1 // which is used for the flash filesystem. The following code // resets and disables all MPU regions configured in the bootloader. HAL_MPU_Disable(); MPU_Region_InitTypeDef MPU_InitStruct; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; for (int i = MPU_REGION_NUMBER0; i < MPU_REGION_NUMBER15; i++) { MPU_InitStruct.Number = i; MPU_InitStruct.Enable = MPU_REGION_DISABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); } #endif #if MICROPY_HW_USB_HS_ULPI3320 // Make sure UPLI is Not in low-power mode. ulpi_leave_low_power(); #endif } void NICLAV_board_enter_bootloader(void) { RTC_HandleTypeDef RTCHandle; RTCHandle.Instance = RTC; HAL_RTCEx_BKUPWrite(&RTCHandle, RTC_BKP_DR0, 0xDF59); NVIC_SystemReset(); } void NICLAV_board_osc_enable(int enable) { mp_hal_pin_config(pyb_pin_OSCEN, MP_HAL_PIN_MODE_OUTPUT, MP_HAL_PIN_PULL_UP, 0); mp_hal_pin_config_speed(pyb_pin_OSCEN, MP_HAL_PIN_SPEED_LOW); mp_hal_pin_write(pyb_pin_OSCEN, enable); } void NICLAV_board_pmic_enable(int enable) { __HAL_RCC_GPIOF_CLK_ENABLE(); // Configure PMIC I2C GPIOs GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = GPIO_PIN_0 | GPIO_PIN_1; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; GPIO_InitStructure.Mode = GPIO_MODE_AF_OD; GPIO_InitStructure.Alternate = GPIO_AF4_I2C2; HAL_GPIO_Init(GPIOF, &GPIO_InitStructure); // Configure PMIC I2C I2C_HandleTypeDef i2c; i2c.Instance = I2C2; i2c.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; i2c.Init.Timing = 0x20D09DE7; i2c.Init.DualAddressMode = I2C_DUALADDRESS_DISABLED; i2c.Init.GeneralCallMode = I2C_GENERALCALL_DISABLED; i2c.Init.NoStretchMode = I2C_NOSTRETCH_DISABLED; i2c.Init.OwnAddress1 = 0xFE; i2c.Init.OwnAddress2 = 0xFE; i2c.Init.OwnAddress2Masks = 0; __HAL_RCC_I2C2_CLK_ENABLE(); __HAL_RCC_I2C2_FORCE_RESET(); __HAL_RCC_I2C2_RELEASE_RESET(); HAL_I2C_Init(&i2c); // LDO1 2V8 HAL_I2C_Master_Transmit(&i2c, 0x08 << 1, (uint8_t [2]) {0x4D, (enable) ? 0x01 : 0x00}, 2, 1000); // LDO2 1V8 CAM HAL_I2C_Master_Transmit(&i2c, 0x08 << 1, (uint8_t [2]) {0x50, (enable) ? 0x01 : 0x00}, 2, 1000); // LDO3 1V8 HAL_I2C_Master_Transmit(&i2c, 0x08 << 1, (uint8_t [2]) {0x53, (enable) ? 0x01 : 0x00}, 2, 1000); // SW2 VDDIO_EXT HAL_I2C_Master_Transmit(&i2c, 0x08 << 1, (uint8_t [2]) {0x3b, (enable) ? 0x81 : 0x80}, 2, 1000); // SW3 3V3 (Leaving 3.3 on lowers ULPI current). // HAL_I2C_Master_Transmit(&i2c, 0x08<<1, (uint8_t [2]) {0x41, (enable) ? 0x81 : 0x80}, 2, 1000); // SW1 1V8 (Main supply is Never turned off) // HAL_I2C_Master_Transmit(&i2c, 0x08<<1, (uint8_t [2]) {0x35, (enable) ? 0x81 : 0x80}, 2, 1000); HAL_I2C_DeInit(&i2c); __HAL_RCC_I2C2_FORCE_RESET(); __HAL_RCC_I2C2_RELEASE_RESET(); __HAL_RCC_I2C2_CLK_DISABLE(); HAL_GPIO_DeInit(GPIOF, GPIO_PIN_0); HAL_GPIO_DeInit(GPIOF, GPIO_PIN_1); __HAL_RCC_GPIOF_CLK_DISABLE(); } static __attribute__((naked, noreturn)) void cm4_enter_standby(void) { // Clear and mask D1 EXTIs. EXTI_D1->PR1 = 0x3fffff; EXTI_D1->IMR1 &= ~(0xFFFFu); // 16 lines // Clear and mask D2 EXTIs. EXTI_D2->IMR1 &= ~(0xFFFFu); // 16 lines EXTI_D2->PR1 = 0x3fffff; EXTI->D3PMR1 = 0;///0x0238FFFFu; EXTI->D3PMR2 = 0;///0x003F020Cu; EXTI->D3PMR3 = 0;///0x01000000u; // Set D2/D2 PDDS bits. PWR->CPUCR |= (PWR_CPUCR_PDDS_D2 | PWR_CPUCR_PDDS_D3); PWR->CPU2CR |= (PWR_CPU2CR_PDDS_D2 | PWR_CPU2CR_PDDS_D3); CLEAR_BIT(PWR->CPU2CR, PWR_CPU2CR_RUN_D3); // Set SLEEPDEEP bit. SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; // Enter CPU stop mode. __WFI(); } void NICLAV_board_low_power(int mode) { switch (mode) { case 0: // Leave stop mode. ulpi_leave_low_power(); break; case 1: // Enter stop mode. ulpi_enter_low_power(); break; case 2: // Enter standby mode. ulpi_enter_low_power(); break; } #if (MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE == 0) // Enable QSPI deepsleep for modes 1 and 2 mp_spiflash_deepsleep(&spi_bdev.spiflash, (mode != 0)); #endif if (mode == 2) { if (RCC->GCR & RCC_GCR_BOOT_C2) { // If CM4 is booted, it should be running a firmware // that supports low-power mode entry via HSEM. __HAL_RCC_HSEM_CLK_ENABLE(); HAL_HSEM_FastTake(0); HAL_HSEM_Release(0, 0); } else { // If CM4 is not booted, rig an ISR vector, with a reset // handler that points to standby function and boot it. volatile extern char _cm4_ram_start[1024]; uint32_t *cm4_ram = (uint32_t *)_cm4_ram_start; cm4_ram[0] = (uint32_t)(_cm4_ram_start + 1024); cm4_ram[1] = ((uint32_t)&cm4_enter_standby) | 1; SCB_CleanDCache_by_Addr((uint32_t *)_cm4_ram_start, 8); HAL_PWREx_HoldCore(PWR_CORE_CPU2); HAL_SYSCFG_CM4BootAddConfig(SYSCFG_BOOT_ADDR0, (uint32_t)_cm4_ram_start); HAL_RCCEx_EnableBootCore(RCC_BOOT_C2); } // Wait for the CM4 to enter stop mode. HAL_Delay(100); // Disable all power rails, except core voltage. NICLAV_board_pmic_enable(false); // Reset all buses, peripherals, GPIO clocks etc.. RCC->AHB1RSTR = 0x0A00C023U; RCC->AHB2RSTR = 0x00000271U; RCC->AHB3RSTR = 0x00015031U; RCC->AHB4RSTR = 0x0328077FU; // LSE GPIO port is masked. RCC->APB1LRSTR = 0xE8FFC3FFU; RCC->APB1HRSTR = 0x00000136U; RCC->APB2RSTR = 0x31D73033U; RCC->APB3RSTR = 0x00000018U; RCC->APB4RSTR = 0x0020DEAAU; } }