/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #include "py/misc.h" #include "flash.h" typedef struct { uint32_t base_address; uint32_t sector_size; uint32_t sector_count; } flash_layout_t; #if defined(STM32F0) static const flash_layout_t flash_layout[] = { { FLASH_BASE, FLASH_PAGE_SIZE, (FLASH_BANK1_END + 1 - FLASH_BASE) / FLASH_PAGE_SIZE }, }; #elif defined(STM32F4) static const flash_layout_t flash_layout[] = { { 0x08000000, 0x04000, 4 }, { 0x08010000, 0x10000, 1 }, { 0x08020000, 0x20000, 3 }, #if defined(FLASH_SECTOR_8) { 0x08080000, 0x20000, 4 }, #endif #if defined(FLASH_SECTOR_12) { 0x08100000, 0x04000, 4 }, { 0x08110000, 0x10000, 1 }, { 0x08120000, 0x20000, 7 }, #endif }; #elif defined(STM32F7) // FLASH_FLAG_PGSERR (Programming Sequence Error) was renamed to // FLASH_FLAG_ERSERR (Erasing Sequence Error) in STM32F7 #define FLASH_FLAG_PGSERR FLASH_FLAG_ERSERR static const flash_layout_t flash_layout[] = { { 0x08000000, 0x08000, 4 }, { 0x08020000, 0x20000, 1 }, { 0x08040000, 0x40000, 3 }, }; #elif defined(STM32L0) || defined(STM32L4) static const flash_layout_t flash_layout[] = { { (uint32_t)FLASH_BASE, (uint32_t)FLASH_PAGE_SIZE, 512 }, }; #elif defined(STM32H7) static const flash_layout_t flash_layout[] = { { 0x08000000, 0x20000, 16 }, }; #else #error Unsupported processor #endif #if (defined(STM32L4) && defined(SYSCFG_MEMRMP_FB_MODE)) || defined(STM32H7) // get the bank of a given flash address static uint32_t get_bank(uint32_t addr) { #if defined(STM32H7) if (READ_BIT(FLASH->OPTCR, FLASH_OPTCR_SWAP_BANK) == 0) { #else if (READ_BIT(SYSCFG->MEMRMP, SYSCFG_MEMRMP_FB_MODE) == 0) { #endif // no bank swap if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { return FLASH_BANK_1; } else { return FLASH_BANK_2; } } else { // bank swap if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { return FLASH_BANK_2; } else { return FLASH_BANK_1; } } } #if (defined(STM32L4) && defined(SYSCFG_MEMRMP_FB_MODE)) // get the page of a given flash address static uint32_t get_page(uint32_t addr) { if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { // bank 1 return (addr - FLASH_BASE) / FLASH_PAGE_SIZE; } else { // bank 2 return (addr - (FLASH_BASE + FLASH_BANK_SIZE)) / FLASH_PAGE_SIZE; } } #endif #elif defined(STM32L4) && !defined(SYSCFG_MEMRMP_FB_MODE) static uint32_t get_page(uint32_t addr) { return (addr - FLASH_BASE) / FLASH_PAGE_SIZE; } #endif uint32_t flash_get_sector_info(uint32_t addr, uint32_t *start_addr, uint32_t *size) { if (addr >= flash_layout[0].base_address) { uint32_t sector_index = 0; for (int i = 0; i < MP_ARRAY_SIZE(flash_layout); ++i) { for (int j = 0; j < flash_layout[i].sector_count; ++j) { uint32_t sector_start_next = flash_layout[i].base_address + (j + 1) * flash_layout[i].sector_size; if (addr < sector_start_next) { if (start_addr != NULL) { *start_addr = flash_layout[i].base_address + j * flash_layout[i].sector_size; } if (size != NULL) { *size = flash_layout[i].sector_size; } return sector_index; } ++sector_index; } } } return 0; } void flash_erase(uint32_t flash_dest, uint32_t num_word32) { // check there is something to write if (num_word32 == 0) { return; } // unlock HAL_FLASH_Unlock(); FLASH_EraseInitTypeDef EraseInitStruct; #if defined(STM32F0) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.PageAddress = flash_dest; EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE; #elif defined(STM32L0) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.PageAddress = flash_dest; EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE; #elif defined(STM32L4) && !defined(SYSCFG_MEMRMP_FB_MODE) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.Page = get_page(flash_dest); EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE; #elif defined(STM32L4) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS); // erase the sector(s) // The sector returned by flash_get_sector_info can not be used // as the flash has on each bank 0/1 pages 0..255 EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.Banks = get_bank(flash_dest); EraseInitStruct.Page = get_page(flash_dest); EraseInitStruct.NbPages = get_page(flash_dest + 4 * num_word32 - 1) - EraseInitStruct.Page + 1;; #else // Clear pending flags (if any) #if defined(STM32H7) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS_BANK1 | FLASH_FLAG_ALL_ERRORS_BANK2); #else __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR); #endif // erase the sector(s) EraseInitStruct.TypeErase = TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V #if defined(STM32H7) EraseInitStruct.Banks = get_bank(flash_dest); #endif EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL); EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1; #endif uint32_t SectorError = 0; if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) { // error occurred during sector erase HAL_FLASH_Lock(); // lock the flash return; } } /* // erase the sector using an interrupt void flash_erase_it(uint32_t flash_dest, uint32_t num_word32) { // check there is something to write if (num_word32 == 0) { return; } // unlock HAL_FLASH_Unlock(); // Clear pending flags (if any) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR|FLASH_FLAG_PGSERR); // erase the sector(s) FLASH_EraseInitTypeDef EraseInitStruct; EraseInitStruct.TypeErase = TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL); EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1; if (HAL_FLASHEx_Erase_IT(&EraseInitStruct) != HAL_OK) { // error occurred during sector erase HAL_FLASH_Lock(); // lock the flash return; } } */ void flash_write(uint32_t flash_dest, const uint32_t *src, uint32_t num_word32) { #if defined(STM32L4) // program the flash uint64 by uint64 for (int i = 0; i < num_word32 / 2; i++) { uint64_t val = *(uint64_t*)src; if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, flash_dest, val) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash return; } flash_dest += 8; src += 2; } if ((num_word32 & 0x01) == 1) { uint64_t val = *(uint64_t*)flash_dest; val = (val & 0xffffffff00000000uL) | (*src); if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, flash_dest, val) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash return; } } #elif defined(STM32H7) // program the flash 256 bits at a time for (int i = 0; i < num_word32 / 8; i++) { if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_FLASHWORD, flash_dest, (uint64_t)(uint32_t)src) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash return; } flash_dest += 32; src += 8; } #else // program the flash word by word for (int i = 0; i < num_word32; i++) { if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, flash_dest, *src) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash return; } flash_dest += 4; src += 1; } #endif // lock the flash HAL_FLASH_Lock(); } /* use erase, then write void flash_erase_and_write(uint32_t flash_dest, const uint32_t *src, uint32_t num_word32) { // check there is something to write if (num_word32 == 0) { return; } // unlock HAL_FLASH_Unlock(); // Clear pending flags (if any) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR|FLASH_FLAG_PGSERR); // erase the sector(s) FLASH_EraseInitTypeDef EraseInitStruct; EraseInitStruct.TypeErase = TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL); EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1; uint32_t SectorError = 0; if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) { // error occurred during sector erase HAL_FLASH_Lock(); // lock the flash return; } // program the flash word by word for (int i = 0; i < num_word32; i++) { if (HAL_FLASH_Program(TYPEPROGRAM_WORD, flash_dest, *src) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash return; } flash_dest += 4; src += 1; } // lock the flash HAL_FLASH_Lock(); } */