/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mpstate.h" #include "py/nlr.h" #include "py/emitglue.h" #include "py/objtype.h" #include "py/runtime.h" #include "py/bc0.h" #include "py/bc.h" #if 0 #define TRACE(ip) printf("sp=" INT_FMT " ", sp - code_state->sp); mp_bytecode_print2(ip, 1); #else #define TRACE(ip) #endif // Value stack grows up (this makes it incompatible with native C stack, but // makes sure that arguments to functions are in natural order arg1..argN // (Python semantics mandates left-to-right evaluation order, including for // function arguments). Stack pointer is pre-incremented and points at the // top element. // Exception stack also grows up, top element is also pointed at. // Exception stack unwind reasons (WHY_* in CPython-speak) // TODO perhaps compress this to RETURN=0, JUMP>0, with number of unwinds // left to do encoded in the JUMP number typedef enum { UNWIND_RETURN = 1, UNWIND_JUMP, } mp_unwind_reason_t; #define DECODE_UINT \ mp_uint_t unum = 0; \ do { \ unum = (unum << 7) + (*ip & 0x7f); \ } while ((*ip++ & 0x80) != 0) #define DECODE_ULABEL mp_uint_t ulab = (ip[0] | (ip[1] << 8)); ip += 2 #define DECODE_SLABEL mp_uint_t slab = (ip[0] | (ip[1] << 8)) - 0x8000; ip += 2 #define DECODE_QSTR qstr qst = 0; \ do { \ qst = (qst << 7) + (*ip & 0x7f); \ } while ((*ip++ & 0x80) != 0) #define DECODE_PTR \ ip = (byte*)(((mp_uint_t)ip + sizeof(mp_uint_t) - 1) & (~(sizeof(mp_uint_t) - 1))); /* align ip */ \ void *ptr = (void*)*(mp_uint_t*)ip; \ ip += sizeof(mp_uint_t) #define PUSH(val) *++sp = (val) #define POP() (*sp--) #define TOP() (*sp) #define SET_TOP(val) *sp = (val) #define PUSH_EXC_BLOCK(with_or_finally) do { \ DECODE_ULABEL; /* except labels are always forward */ \ ++exc_sp; \ exc_sp->handler = ip + ulab; \ exc_sp->val_sp = MP_TAGPTR_MAKE(sp, ((with_or_finally) << 1) | currently_in_except_block); \ exc_sp->prev_exc = MP_OBJ_NULL; \ currently_in_except_block = 0; /* in a try block now */ \ } while (0) #define POP_EXC_BLOCK() \ currently_in_except_block = MP_TAGPTR_TAG0(exc_sp->val_sp); /* restore previous state */ \ exc_sp--; /* pop back to previous exception handler */ // fastn has items in reverse order (fastn[0] is local[0], fastn[-1] is local[1], etc) // sp points to bottom of stack which grows up // returns: // MP_VM_RETURN_NORMAL, sp valid, return value in *sp // MP_VM_RETURN_YIELD, ip, sp valid, yielded value in *sp // MP_VM_RETURN_EXCEPTION, exception in fastn[0] mp_vm_return_kind_t mp_execute_bytecode(mp_code_state *code_state, volatile mp_obj_t inject_exc) { #define SELECTIVE_EXC_IP (0) #if SELECTIVE_EXC_IP #define MARK_EXC_IP_SELECTIVE() { code_state->ip = ip; } /* stores ip 1 byte past last opcode */ #define MARK_EXC_IP_GLOBAL() #else #define MARK_EXC_IP_SELECTIVE() #define MARK_EXC_IP_GLOBAL() { code_state->ip = ip; } /* stores ip pointing to last opcode */ #endif #if MICROPY_OPT_COMPUTED_GOTO #include "py/vmentrytable.h" #define DISPATCH() do { \ TRACE(ip); \ MARK_EXC_IP_GLOBAL(); \ goto *entry_table[*ip++]; \ } while(0) #define DISPATCH_WITH_PEND_EXC_CHECK() goto pending_exception_check #define ENTRY(op) entry_##op #define ENTRY_DEFAULT entry_default #else #define DISPATCH() break #define DISPATCH_WITH_PEND_EXC_CHECK() goto pending_exception_check #define ENTRY(op) case op #define ENTRY_DEFAULT default #endif // nlr_raise needs to be implemented as a goto, so that the C compiler's flow analyser // sees that it's possible for us to jump from the dispatch loop to the exception // handler. Without this, the code may have a different stack layout in the dispatch // loop and the exception handler, leading to very obscure bugs. #define RAISE(o) do { nlr_pop(); nlr.ret_val = o; goto exception_handler; } while(0) // Pointers which are constant for particular invocation of mp_execute_bytecode() mp_obj_t *const fastn = &code_state->state[code_state->n_state - 1]; mp_exc_stack_t *const exc_stack = (mp_exc_stack_t*)(code_state->state + code_state->n_state); // variables that are visible to the exception handler (declared volatile) volatile bool currently_in_except_block = MP_TAGPTR_TAG0(code_state->exc_sp); // 0 or 1, to detect nested exceptions mp_exc_stack_t *volatile exc_sp = MP_TAGPTR_PTR(code_state->exc_sp); // stack grows up, exc_sp points to top of stack // outer exception handling loop for (;;) { nlr_buf_t nlr; outer_dispatch_loop: if (nlr_push(&nlr) == 0) { // local variables that are not visible to the exception handler const byte *ip = code_state->ip; mp_obj_t *sp = code_state->sp; mp_obj_t obj_shared; // If we have exception to inject, now that we finish setting up // execution context, raise it. This works as if RAISE_VARARGS // bytecode was executed. // Injecting exc into yield from generator is a special case, // handled by MP_BC_YIELD_FROM itself if (inject_exc != MP_OBJ_NULL && *ip != MP_BC_YIELD_FROM) { mp_obj_t exc = inject_exc; inject_exc = MP_OBJ_NULL; exc = mp_make_raise_obj(exc); RAISE(exc); } // loop to execute byte code for (;;) { dispatch_loop: #if MICROPY_OPT_COMPUTED_GOTO DISPATCH(); #else TRACE(ip); MARK_EXC_IP_GLOBAL(); switch (*ip++) { #endif ENTRY(MP_BC_LOAD_CONST_FALSE): PUSH(mp_const_false); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_NONE): PUSH(mp_const_none); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_TRUE): PUSH(mp_const_true); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_ELLIPSIS): PUSH((mp_obj_t)&mp_const_ellipsis_obj); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_SMALL_INT): { mp_int_t num = 0; if ((ip[0] & 0x40) != 0) { // Number is negative num--; } do { num = (num << 7) | (*ip & 0x7f); } while ((*ip++ & 0x80) != 0); PUSH(MP_OBJ_NEW_SMALL_INT(num)); DISPATCH(); } ENTRY(MP_BC_LOAD_CONST_INT): { DECODE_QSTR; PUSH(mp_load_const_int(qst)); DISPATCH(); } ENTRY(MP_BC_LOAD_CONST_DEC): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; PUSH(mp_load_const_dec(qst)); DISPATCH(); } ENTRY(MP_BC_LOAD_CONST_BYTES): { DECODE_QSTR; PUSH(mp_load_const_bytes(qst)); DISPATCH(); } ENTRY(MP_BC_LOAD_CONST_STRING): { DECODE_QSTR; PUSH(mp_load_const_str(qst)); DISPATCH(); } ENTRY(MP_BC_LOAD_NULL): PUSH(MP_OBJ_NULL); DISPATCH(); ENTRY(MP_BC_LOAD_FAST_N): { DECODE_UINT; obj_shared = fastn[-unum]; load_check: if (obj_shared == MP_OBJ_NULL) { local_name_error: { MARK_EXC_IP_SELECTIVE(); mp_obj_t obj = mp_obj_new_exception_msg(&mp_type_NameError, "local variable referenced before assignment"); RAISE(obj); } } PUSH(obj_shared); DISPATCH(); } ENTRY(MP_BC_LOAD_DEREF): { DECODE_UINT; obj_shared = mp_obj_cell_get(fastn[-unum]); goto load_check; } #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_LOAD_NAME): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; PUSH(mp_load_name(qst)); DISPATCH(); } #else ENTRY(MP_BC_LOAD_NAME): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_uint_t x = *ip; if (x < MP_STATE_CTX(dict_locals)->map.alloc && MP_STATE_CTX(dict_locals)->map.table[x].key == key) { PUSH(MP_STATE_CTX(dict_locals)->map.table[x].value); } else { mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_locals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { *(byte*)ip = (elem - &MP_STATE_CTX(dict_locals)->map.table[0]) & 0xff; PUSH(elem->value); } else { PUSH(mp_load_name(MP_OBJ_QSTR_VALUE(key))); } } ip++; DISPATCH(); } #endif #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_LOAD_GLOBAL): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; PUSH(mp_load_global(qst)); DISPATCH(); } #else ENTRY(MP_BC_LOAD_GLOBAL): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_uint_t x = *ip; if (x < MP_STATE_CTX(dict_globals)->map.alloc && MP_STATE_CTX(dict_globals)->map.table[x].key == key) { PUSH(MP_STATE_CTX(dict_globals)->map.table[x].value); } else { mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_globals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { *(byte*)ip = (elem - &MP_STATE_CTX(dict_globals)->map.table[0]) & 0xff; PUSH(elem->value); } else { PUSH(mp_load_global(MP_OBJ_QSTR_VALUE(key))); } } ip++; DISPATCH(); } #endif #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_LOAD_ATTR): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; SET_TOP(mp_load_attr(TOP(), qst)); DISPATCH(); } #else ENTRY(MP_BC_LOAD_ATTR): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t top = TOP(); if (mp_obj_get_type(top)->load_attr == mp_obj_instance_load_attr) { mp_obj_instance_t *self = top; mp_uint_t x = *ip; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_map_elem_t *elem; if (x < self->members.alloc && self->members.table[x].key == key) { elem = &self->members.table[x]; } else { elem = mp_map_lookup(&self->members, key, MP_MAP_LOOKUP); if (elem != NULL) { *(byte*)ip = elem - &self->members.table[0]; } else { goto load_attr_cache_fail; } } SET_TOP(elem->value); ip++; DISPATCH(); } load_attr_cache_fail: SET_TOP(mp_load_attr(top, qst)); ip++; DISPATCH(); } #endif ENTRY(MP_BC_LOAD_METHOD): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_load_method(*sp, qst, sp); sp += 1; DISPATCH(); } ENTRY(MP_BC_LOAD_BUILD_CLASS): MARK_EXC_IP_SELECTIVE(); PUSH(mp_load_build_class()); DISPATCH(); ENTRY(MP_BC_LOAD_SUBSCR): { MARK_EXC_IP_SELECTIVE(); mp_obj_t index = POP(); SET_TOP(mp_obj_subscr(TOP(), index, MP_OBJ_SENTINEL)); DISPATCH(); } ENTRY(MP_BC_STORE_FAST_N): { DECODE_UINT; fastn[-unum] = POP(); DISPATCH(); } ENTRY(MP_BC_STORE_DEREF): { DECODE_UINT; mp_obj_cell_set(fastn[-unum], POP()); DISPATCH(); } ENTRY(MP_BC_STORE_NAME): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_store_name(qst, POP()); DISPATCH(); } ENTRY(MP_BC_STORE_GLOBAL): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_store_global(qst, POP()); DISPATCH(); } #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_STORE_ATTR): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_store_attr(sp[0], qst, sp[-1]); sp -= 2; DISPATCH(); } #else // This caching code works with MICROPY_PY_BUILTINS_PROPERTY enabled because // if the attr exists in self->members then it can't be a property. A // consequence of this is that we can't use MP_MAP_LOOKUP_ADD_IF_NOT_FOUND // in the fast-path below, because that store could override a property. ENTRY(MP_BC_STORE_ATTR): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t top = TOP(); if (mp_obj_get_type(top)->store_attr == mp_obj_instance_store_attr && sp[-1] != MP_OBJ_NULL) { mp_obj_instance_t *self = top; mp_uint_t x = *ip; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_map_elem_t *elem; if (x < self->members.alloc && self->members.table[x].key == key) { elem = &self->members.table[x]; } else { elem = mp_map_lookup(&self->members, key, MP_MAP_LOOKUP); if (elem != NULL) { *(byte*)ip = elem - &self->members.table[0]; } else { goto store_attr_cache_fail; } } elem->value = sp[-1]; sp -= 2; ip++; DISPATCH(); } store_attr_cache_fail: mp_store_attr(sp[0], qst, sp[-1]); sp -= 2; ip++; DISPATCH(); } #endif ENTRY(MP_BC_STORE_SUBSCR): MARK_EXC_IP_SELECTIVE(); mp_obj_subscr(sp[-1], sp[0], sp[-2]); sp -= 3; DISPATCH(); ENTRY(MP_BC_DELETE_FAST): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; if (fastn[-unum] == MP_OBJ_NULL) { goto local_name_error; } fastn[-unum] = MP_OBJ_NULL; DISPATCH(); } ENTRY(MP_BC_DELETE_DEREF): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; if (mp_obj_cell_get(fastn[-unum]) == MP_OBJ_NULL) { goto local_name_error; } mp_obj_cell_set(fastn[-unum], MP_OBJ_NULL); DISPATCH(); } ENTRY(MP_BC_DELETE_NAME): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_delete_name(qst); DISPATCH(); } ENTRY(MP_BC_DELETE_GLOBAL): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_delete_global(qst); DISPATCH(); } ENTRY(MP_BC_DUP_TOP): { mp_obj_t top = TOP(); PUSH(top); DISPATCH(); } ENTRY(MP_BC_DUP_TOP_TWO): sp += 2; sp[0] = sp[-2]; sp[-1] = sp[-3]; DISPATCH(); ENTRY(MP_BC_POP_TOP): sp -= 1; DISPATCH(); ENTRY(MP_BC_ROT_TWO): { mp_obj_t top = sp[0]; sp[0] = sp[-1]; sp[-1] = top; DISPATCH(); } ENTRY(MP_BC_ROT_THREE): { mp_obj_t top = sp[0]; sp[0] = sp[-1]; sp[-1] = sp[-2]; sp[-2] = top; DISPATCH(); } ENTRY(MP_BC_JUMP): { DECODE_SLABEL; ip += slab; DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_POP_JUMP_IF_TRUE): { DECODE_SLABEL; if (mp_obj_is_true(POP())) { ip += slab; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_POP_JUMP_IF_FALSE): { DECODE_SLABEL; if (!mp_obj_is_true(POP())) { ip += slab; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_JUMP_IF_TRUE_OR_POP): { DECODE_SLABEL; if (mp_obj_is_true(TOP())) { ip += slab; } else { sp--; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_JUMP_IF_FALSE_OR_POP): { DECODE_SLABEL; if (mp_obj_is_true(TOP())) { sp--; } else { ip += slab; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_SETUP_WITH): { MARK_EXC_IP_SELECTIVE(); mp_obj_t obj = TOP(); SET_TOP(mp_load_attr(obj, MP_QSTR___exit__)); mp_load_method(obj, MP_QSTR___enter__, sp + 1); mp_obj_t ret = mp_call_method_n_kw(0, 0, sp + 1); PUSH_EXC_BLOCK(1); PUSH(ret); DISPATCH(); } ENTRY(MP_BC_WITH_CLEANUP): { MARK_EXC_IP_SELECTIVE(); // Arriving here, there's "exception control block" on top of stack, // and __exit__ bound method underneath it. Bytecode calls __exit__, // and "deletes" it off stack, shifting "exception control block" // to its place. static const mp_obj_t no_exc[] = {mp_const_none, mp_const_none, mp_const_none}; if (TOP() == mp_const_none) { sp--; mp_obj_t obj = TOP(); SET_TOP(mp_const_none); mp_call_function_n_kw(obj, 3, 0, no_exc); } else if (MP_OBJ_IS_SMALL_INT(TOP())) { mp_obj_t cause = POP(); switch (MP_OBJ_SMALL_INT_VALUE(cause)) { case UNWIND_RETURN: { mp_obj_t retval = POP(); mp_call_function_n_kw(TOP(), 3, 0, no_exc); SET_TOP(retval); PUSH(cause); break; } case UNWIND_JUMP: { mp_call_function_n_kw(sp[-2], 3, 0, no_exc); // Pop __exit__ boundmethod at sp[-2] sp[-2] = sp[-1]; sp[-1] = sp[0]; SET_TOP(cause); break; } default: assert(0); } } else if (mp_obj_is_exception_type(TOP())) { mp_obj_t args[3] = {sp[0], sp[-1], sp[-2]}; mp_obj_t ret_value = mp_call_function_n_kw(sp[-3], 3, 0, args); // Pop __exit__ boundmethod at sp[-3] // TODO: Once semantics is proven, optimize for case when ret_value == True sp[-3] = sp[-2]; sp[-2] = sp[-1]; sp[-1] = sp[0]; sp--; if (mp_obj_is_true(ret_value)) { // This is what CPython does //PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_SILENCED)); // But what we need to do is - pop exception from value stack... sp -= 3; // ... pop "with" exception handler, and signal END_FINALLY // to just execute finally handler normally (by pushing None // on value stack) assert(exc_sp >= exc_stack); POP_EXC_BLOCK(); PUSH(mp_const_none); } } else { assert(0); } DISPATCH(); } ENTRY(MP_BC_UNWIND_JUMP): { MARK_EXC_IP_SELECTIVE(); DECODE_SLABEL; PUSH((void*)(ip + slab)); // push destination ip for jump PUSH((void*)(mp_uint_t)(*ip)); // push number of exception handlers to unwind (0x80 bit set if we also need to pop stack) unwind_jump:; mp_uint_t unum = (mp_uint_t)POP(); // get number of exception handlers to unwind while ((unum & 0x7f) > 0) { unum -= 1; assert(exc_sp >= exc_stack); if (MP_TAGPTR_TAG1(exc_sp->val_sp)) { // We're going to run "finally" code as a coroutine // (not calling it recursively). Set up a sentinel // on a stack so it can return back to us when it is // done (when END_FINALLY reached). PUSH((void*)unum); // push number of exception handlers left to unwind PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_JUMP)); // push sentinel ip = exc_sp->handler; // get exception handler byte code address exc_sp--; // pop exception handler goto dispatch_loop; // run the exception handler } exc_sp--; } ip = (const byte*)POP(); // pop destination ip for jump if (unum != 0) { sp--; } DISPATCH_WITH_PEND_EXC_CHECK(); } // matched against: POP_BLOCK or POP_EXCEPT (anything else?) ENTRY(MP_BC_SETUP_EXCEPT): ENTRY(MP_BC_SETUP_FINALLY): { MARK_EXC_IP_SELECTIVE(); #if SELECTIVE_EXC_IP PUSH_EXC_BLOCK((code_state->ip[-1] == MP_BC_SETUP_FINALLY) ? 1 : 0); #else PUSH_EXC_BLOCK((code_state->ip[0] == MP_BC_SETUP_FINALLY) ? 1 : 0); #endif DISPATCH(); } ENTRY(MP_BC_END_FINALLY): MARK_EXC_IP_SELECTIVE(); // not fully implemented // if TOS is an exception, reraises the exception (3 values on TOS) // if TOS is None, just pops it and continues // if TOS is an integer, does something else // else error if (mp_obj_is_exception_type(TOP())) { RAISE(sp[-1]); } if (TOP() == mp_const_none) { sp--; } else if (MP_OBJ_IS_SMALL_INT(TOP())) { // We finished "finally" coroutine and now dispatch back // to our caller, based on TOS value mp_unwind_reason_t reason = MP_OBJ_SMALL_INT_VALUE(POP()); switch (reason) { case UNWIND_RETURN: goto unwind_return; case UNWIND_JUMP: goto unwind_jump; } assert(0); } else { assert(0); } DISPATCH(); ENTRY(MP_BC_GET_ITER): MARK_EXC_IP_SELECTIVE(); SET_TOP(mp_getiter(TOP())); DISPATCH(); ENTRY(MP_BC_FOR_ITER): { MARK_EXC_IP_SELECTIVE(); DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward code_state->sp = sp; assert(TOP()); mp_obj_t value = mp_iternext_allow_raise(TOP()); if (value == MP_OBJ_STOP_ITERATION) { --sp; // pop the exhausted iterator ip += ulab; // jump to after for-block } else { PUSH(value); // push the next iteration value } DISPATCH(); } // matched against: SETUP_EXCEPT, SETUP_FINALLY, SETUP_WITH ENTRY(MP_BC_POP_BLOCK): // we are exiting an exception handler, so pop the last one of the exception-stack assert(exc_sp >= exc_stack); POP_EXC_BLOCK(); DISPATCH(); // matched against: SETUP_EXCEPT ENTRY(MP_BC_POP_EXCEPT): // TODO need to work out how blocks work etc // pops block, checks it's an exception block, and restores the stack, saving the 3 exception values to local threadstate assert(exc_sp >= exc_stack); assert(currently_in_except_block); //sp = (mp_obj_t*)(*exc_sp--); //exc_sp--; // discard ip POP_EXC_BLOCK(); //sp -= 3; // pop 3 exception values DISPATCH(); ENTRY(MP_BC_NOT): if (TOP() == mp_const_true) { SET_TOP(mp_const_false); } else { SET_TOP(mp_const_true); } DISPATCH(); ENTRY(MP_BC_BUILD_TUPLE): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_tuple(unum, sp)); DISPATCH(); } ENTRY(MP_BC_BUILD_LIST): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_list(unum, sp)); DISPATCH(); } ENTRY(MP_BC_LIST_APPEND): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // I think it's guaranteed by the compiler that sp[unum] is a list mp_obj_list_append(sp[-unum], sp[0]); sp--; DISPATCH(); } ENTRY(MP_BC_BUILD_MAP): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; PUSH(mp_obj_new_dict(unum)); DISPATCH(); } ENTRY(MP_BC_STORE_MAP): MARK_EXC_IP_SELECTIVE(); sp -= 2; mp_obj_dict_store(sp[0], sp[2], sp[1]); DISPATCH(); ENTRY(MP_BC_MAP_ADD): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // I think it's guaranteed by the compiler that sp[-unum - 1] is a map mp_obj_dict_store(sp[-unum - 1], sp[0], sp[-1]); sp -= 2; DISPATCH(); } #if MICROPY_PY_BUILTINS_SET ENTRY(MP_BC_BUILD_SET): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_set(unum, sp)); DISPATCH(); } ENTRY(MP_BC_SET_ADD): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // I think it's guaranteed by the compiler that sp[-unum] is a set mp_obj_set_store(sp[-unum], sp[0]); sp--; DISPATCH(); } #endif #if MICROPY_PY_BUILTINS_SLICE ENTRY(MP_BC_BUILD_SLICE): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; if (unum == 2) { mp_obj_t stop = POP(); mp_obj_t start = TOP(); SET_TOP(mp_obj_new_slice(start, stop, mp_const_none)); } else { mp_obj_t step = POP(); mp_obj_t stop = POP(); mp_obj_t start = TOP(); SET_TOP(mp_obj_new_slice(start, stop, step)); } DISPATCH(); } #endif ENTRY(MP_BC_UNPACK_SEQUENCE): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; mp_unpack_sequence(sp[0], unum, sp); sp += unum - 1; DISPATCH(); } ENTRY(MP_BC_UNPACK_EX): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; mp_unpack_ex(sp[0], unum, sp); sp += (unum & 0xff) + ((unum >> 8) & 0xff); DISPATCH(); } ENTRY(MP_BC_MAKE_FUNCTION): { DECODE_PTR; PUSH(mp_make_function_from_raw_code(ptr, MP_OBJ_NULL, MP_OBJ_NULL)); DISPATCH(); } ENTRY(MP_BC_MAKE_FUNCTION_DEFARGS): { DECODE_PTR; // Stack layout: def_tuple def_dict <- TOS mp_obj_t def_dict = POP(); SET_TOP(mp_make_function_from_raw_code(ptr, TOP(), def_dict)); DISPATCH(); } ENTRY(MP_BC_MAKE_CLOSURE): { DECODE_PTR; mp_uint_t n_closed_over = *ip++; // Stack layout: closed_overs <- TOS sp -= n_closed_over - 1; SET_TOP(mp_make_closure_from_raw_code(ptr, n_closed_over, sp)); DISPATCH(); } ENTRY(MP_BC_MAKE_CLOSURE_DEFARGS): { DECODE_PTR; mp_uint_t n_closed_over = *ip++; // Stack layout: def_tuple def_dict closed_overs <- TOS sp -= 2 + n_closed_over - 1; SET_TOP(mp_make_closure_from_raw_code(ptr, 0x100 | n_closed_over, sp)); DISPATCH(); } ENTRY(MP_BC_CALL_FUNCTION): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe); SET_TOP(mp_call_function_n_kw(*sp, unum & 0xff, (unum >> 8) & 0xff, sp + 1)); DISPATCH(); } ENTRY(MP_BC_CALL_FUNCTION_VAR_KW): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword // We have folowing stack layout here: // fun arg0 arg1 ... kw0 val0 kw1 val1 ... seq dict <- TOS sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 2; SET_TOP(mp_call_method_n_kw_var(false, unum, sp)); DISPATCH(); } ENTRY(MP_BC_CALL_METHOD): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 1; SET_TOP(mp_call_method_n_kw(unum & 0xff, (unum >> 8) & 0xff, sp)); DISPATCH(); } ENTRY(MP_BC_CALL_METHOD_VAR_KW): { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword // We have folowing stack layout here: // fun self arg0 arg1 ... kw0 val0 kw1 val1 ... seq dict <- TOS sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 3; SET_TOP(mp_call_method_n_kw_var(true, unum, sp)); DISPATCH(); } ENTRY(MP_BC_RETURN_VALUE): MARK_EXC_IP_SELECTIVE(); unwind_return: while (exc_sp >= exc_stack) { if (MP_TAGPTR_TAG1(exc_sp->val_sp)) { // We're going to run "finally" code as a coroutine // (not calling it recursively). Set up a sentinel // on a stack so it can return back to us when it is // done (when END_FINALLY reached). PUSH(MP_OBJ_NEW_SMALL_INT(UNWIND_RETURN)); ip = exc_sp->handler; // We don't need to do anything with sp, finally is just // syntactic sugar for sequential execution?? // sp = exc_sp--; goto dispatch_loop; } exc_sp--; } nlr_pop(); code_state->sp = sp; assert(exc_sp == exc_stack - 1); return MP_VM_RETURN_NORMAL; ENTRY(MP_BC_RAISE_VARARGS): { MARK_EXC_IP_SELECTIVE(); mp_uint_t unum = *ip++; mp_obj_t obj; assert(unum <= 1); if (unum == 0) { // search for the inner-most previous exception, to reraise it obj = MP_OBJ_NULL; for (mp_exc_stack_t *e = exc_sp; e >= exc_stack; e--) { if (e->prev_exc != MP_OBJ_NULL) { obj = e->prev_exc; break; } } if (obj == MP_OBJ_NULL) { obj = mp_obj_new_exception_msg(&mp_type_RuntimeError, "No active exception to reraise"); RAISE(obj); } } else { obj = POP(); } obj = mp_make_raise_obj(obj); RAISE(obj); } ENTRY(MP_BC_YIELD_VALUE): yield: nlr_pop(); code_state->ip = ip; code_state->sp = sp; code_state->exc_sp = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block); return MP_VM_RETURN_YIELD; ENTRY(MP_BC_YIELD_FROM): { MARK_EXC_IP_SELECTIVE(); //#define EXC_MATCH(exc, type) MP_OBJ_IS_TYPE(exc, type) #define EXC_MATCH(exc, type) mp_obj_exception_match(exc, type) #define GENERATOR_EXIT_IF_NEEDED(t) if (t != MP_OBJ_NULL && EXC_MATCH(t, &mp_type_GeneratorExit)) { RAISE(t); } mp_vm_return_kind_t ret_kind; mp_obj_t send_value = POP(); mp_obj_t t_exc = MP_OBJ_NULL; mp_obj_t ret_value; if (inject_exc != MP_OBJ_NULL) { t_exc = inject_exc; inject_exc = MP_OBJ_NULL; ret_kind = mp_resume(TOP(), MP_OBJ_NULL, t_exc, &ret_value); } else { ret_kind = mp_resume(TOP(), send_value, MP_OBJ_NULL, &ret_value); } if (ret_kind == MP_VM_RETURN_YIELD) { ip--; PUSH(ret_value); goto yield; } if (ret_kind == MP_VM_RETURN_NORMAL) { // Pop exhausted gen sp--; if (ret_value == MP_OBJ_NULL) { // Optimize StopIteration // TODO: get StopIteration's value PUSH(mp_const_none); } else { PUSH(ret_value); } // If we injected GeneratorExit downstream, then even // if it was swallowed, we re-raise GeneratorExit GENERATOR_EXIT_IF_NEEDED(t_exc); DISPATCH(); } if (ret_kind == MP_VM_RETURN_EXCEPTION) { // Pop exhausted gen sp--; if (EXC_MATCH(ret_value, &mp_type_StopIteration)) { PUSH(mp_obj_exception_get_value(ret_value)); // If we injected GeneratorExit downstream, then even // if it was swallowed, we re-raise GeneratorExit GENERATOR_EXIT_IF_NEEDED(t_exc); DISPATCH(); } else { RAISE(ret_value); } } } ENTRY(MP_BC_IMPORT_NAME): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t obj = POP(); SET_TOP(mp_import_name(qst, obj, TOP())); DISPATCH(); } ENTRY(MP_BC_IMPORT_FROM): { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t obj = mp_import_from(TOP(), qst); PUSH(obj); DISPATCH(); } ENTRY(MP_BC_IMPORT_STAR): MARK_EXC_IP_SELECTIVE(); mp_import_all(POP()); DISPATCH(); #if MICROPY_OPT_COMPUTED_GOTO ENTRY(MP_BC_LOAD_CONST_SMALL_INT_MULTI): PUSH(MP_OBJ_NEW_SMALL_INT((mp_int_t)ip[-1] - MP_BC_LOAD_CONST_SMALL_INT_MULTI - 16)); DISPATCH(); ENTRY(MP_BC_LOAD_FAST_MULTI): obj_shared = fastn[MP_BC_LOAD_FAST_MULTI - (mp_int_t)ip[-1]]; goto load_check; ENTRY(MP_BC_STORE_FAST_MULTI): fastn[MP_BC_STORE_FAST_MULTI - (mp_int_t)ip[-1]] = POP(); DISPATCH(); ENTRY(MP_BC_UNARY_OP_MULTI): MARK_EXC_IP_SELECTIVE(); SET_TOP(mp_unary_op(ip[-1] - MP_BC_UNARY_OP_MULTI, TOP())); DISPATCH(); ENTRY(MP_BC_BINARY_OP_MULTI): { MARK_EXC_IP_SELECTIVE(); mp_obj_t rhs = POP(); mp_obj_t lhs = TOP(); SET_TOP(mp_binary_op(ip[-1] - MP_BC_BINARY_OP_MULTI, lhs, rhs)); DISPATCH(); } ENTRY_DEFAULT: MARK_EXC_IP_SELECTIVE(); #else ENTRY_DEFAULT: if (ip[-1] < MP_BC_LOAD_CONST_SMALL_INT_MULTI + 64) { PUSH(MP_OBJ_NEW_SMALL_INT((mp_int_t)ip[-1] - MP_BC_LOAD_CONST_SMALL_INT_MULTI - 16)); DISPATCH(); } else if (ip[-1] < MP_BC_LOAD_FAST_MULTI + 16) { obj_shared = fastn[MP_BC_LOAD_FAST_MULTI - (mp_int_t)ip[-1]]; goto load_check; } else if (ip[-1] < MP_BC_STORE_FAST_MULTI + 16) { fastn[MP_BC_STORE_FAST_MULTI - (mp_int_t)ip[-1]] = POP(); DISPATCH(); } else if (ip[-1] < MP_BC_UNARY_OP_MULTI + 5) { SET_TOP(mp_unary_op(ip[-1] - MP_BC_UNARY_OP_MULTI, TOP())); DISPATCH(); } else if (ip[-1] < MP_BC_BINARY_OP_MULTI + 35) { mp_obj_t rhs = POP(); mp_obj_t lhs = TOP(); SET_TOP(mp_binary_op(ip[-1] - MP_BC_BINARY_OP_MULTI, lhs, rhs)); DISPATCH(); } else #endif { mp_obj_t obj = mp_obj_new_exception_msg(&mp_type_NotImplementedError, "byte code not implemented"); nlr_pop(); fastn[0] = obj; return MP_VM_RETURN_EXCEPTION; } #if !MICROPY_OPT_COMPUTED_GOTO } // switch #endif pending_exception_check: if (MP_STATE_VM(mp_pending_exception) != MP_OBJ_NULL) { MARK_EXC_IP_SELECTIVE(); mp_obj_t obj = MP_STATE_VM(mp_pending_exception); MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL; RAISE(obj); } } // for loop } else { exception_handler: // exception occurred #if SELECTIVE_EXC_IP // with selective ip, we store the ip 1 byte past the opcode, so move ptr back code_state->ip -= 1; #endif // check if it's a StopIteration within a for block if (*code_state->ip == MP_BC_FOR_ITER && mp_obj_is_subclass_fast(mp_obj_get_type(nlr.ret_val), &mp_type_StopIteration)) { const byte *ip = code_state->ip + 1; DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward code_state->ip = ip + ulab; // jump to after for-block code_state->sp -= 1; // pop the exhausted iterator goto outer_dispatch_loop; // continue with dispatch loop } // set file and line number that the exception occurred at // TODO: don't set traceback for exceptions re-raised by END_FINALLY. // But consider how to handle nested exceptions. // TODO need a better way of not adding traceback to constant objects (right now, just GeneratorExit_obj and MemoryError_obj) if (mp_obj_is_exception_instance(nlr.ret_val) && nlr.ret_val != &mp_const_GeneratorExit_obj && nlr.ret_val != &mp_const_MemoryError_obj) { const byte *ip = code_state->code_info; mp_uint_t code_info_size = mp_decode_uint(&ip); qstr block_name = mp_decode_uint(&ip); qstr source_file = mp_decode_uint(&ip); mp_uint_t bc = code_state->ip - code_state->code_info - code_info_size; mp_uint_t source_line = 1; mp_uint_t c; while ((c = *ip)) { mp_uint_t b, l; if ((c & 0x80) == 0) { // 0b0LLBBBBB encoding b = c & 0x1f; l = c >> 5; ip += 1; } else { // 0b1LLLBBBB 0bLLLLLLLL encoding (l's LSB in second byte) b = c & 0xf; l = ((c << 4) & 0x700) | ip[1]; ip += 2; } if (bc >= b) { bc -= b; source_line += l; } else { // found source line corresponding to bytecode offset break; } } mp_obj_exception_add_traceback(nlr.ret_val, source_file, source_line, block_name); } while (currently_in_except_block) { // nested exception assert(exc_sp >= exc_stack); // TODO make a proper message for nested exception // at the moment we are just raising the very last exception (the one that caused the nested exception) // move up to previous exception handler POP_EXC_BLOCK(); } if (exc_sp >= exc_stack) { // set flag to indicate that we are now handling an exception currently_in_except_block = 1; // catch exception and pass to byte code code_state->ip = exc_sp->handler; mp_obj_t *sp = MP_TAGPTR_PTR(exc_sp->val_sp); // save this exception in the stack so it can be used in a reraise, if needed exc_sp->prev_exc = nlr.ret_val; // push(traceback, exc-val, exc-type) PUSH(mp_const_none); PUSH(nlr.ret_val); PUSH(mp_obj_get_type(nlr.ret_val)); code_state->sp = sp; } else { // propagate exception to higher level // TODO what to do about ip and sp? they don't really make sense at this point fastn[0] = nlr.ret_val; // must put exception here because sp is invalid return MP_VM_RETURN_EXCEPTION; } } } }