#include #include #include #include #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "systick.h" #include "obj.h" #include "runtime.h" #include "accel.h" #define ACCEL_ADDR (0x4c) void accel_init(void) { RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1 //gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */); //gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */); //gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */); //gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */); // XXX untested GPIO init! (was above code) GPIO_InitTypeDef GPIO_InitStructure; // PB5 is connected to AVDD; pull high to enable MMA accel device GPIOB->BSRRH = GPIO_Pin_5; // PB5 low to start with GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOB, &GPIO_InitStructure); // PB6=SCL, PB7=SDA GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_OD; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOB, &GPIO_InitStructure); // alternate functions for SCL and SDA GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_I2C1); GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_I2C1); // get clock speeds RCC_ClocksTypeDef rcc_clocks; RCC_GetClocksFreq(&rcc_clocks); // disable the I2C peripheral before we configure it I2C1->CR1 &= ~I2C_CR1_PE; // program peripheral input clock I2C1->CR2 = 4; // no interrupts; 4 MHz (hopefully!) (could go up to 42MHz) // configure clock control reg uint32_t freq = rcc_clocks.PCLK1_Frequency / (100000 << 1); // want 100kHz, this is the formula for freq I2C1->CCR = freq; // standard mode (speed), freq calculated as above // configure rise time reg I2C1->TRISE = (rcc_clocks.PCLK1_Frequency / 1000000) + 1; // formula for trise, gives maximum rise time // enable the I2C peripheral I2C1->CR1 |= I2C_CR1_PE; // wait 20ms, then turn on AVDD, then wait 20ms again; this seems to work, but maybe can decrease delays // doesn't work for soft reboot; 50ms doesn't work either... sys_tick_delay_ms(20); GPIOB->BSRRL = GPIO_Pin_5; sys_tick_delay_ms(20); // set START bit in CR1 to generate a start cond! // init the chip via I2C commands accel_start(ACCEL_ADDR, 1); accel_send_byte(0); accel_stop(); /* // read and print all 11 registers accel_start(ACCEL_ADDR, 1); accel_send_byte(0); accel_restart(ACCEL_ADDR, 0); for (int i = 0; i <= 0xa; i++) { int data; if (i == 0xa) { data = accel_read_nack(); } else { data = accel_read_ack(); } printf(" %02x", data); } printf("\n"); */ // put into active mode accel_start(ACCEL_ADDR, 1); accel_send_byte(7); // mode accel_send_byte(1); // active mode accel_stop(); /* // infinite loop to read values for (;;) { sys_tick_delay_ms(500); accel_start(ACCEL_ADDR, 1); accel_send_byte(0); accel_restart(ACCEL_ADDR, 0); for (int i = 0; i <= 3; i++) { int data; if (i == 3) { data = accel_read_nack(); printf(" %02x\n", data); } else { data = accel_read_ack() & 0x3f; if (data & 0x20) { data |= ~0x1f; } printf(" % 2d", data); } } } */ } static uint32_t i2c_get_sr(void) { // must read SR1 first, then SR2, as the read can clear some flags uint32_t sr1 = I2C1->SR1; uint32_t sr2 = I2C1->SR2; return (sr2 << 16) | sr1; } void accel_restart(uint8_t addr, int write) { // send start condition I2C1->CR1 |= I2C_CR1_START; // wait for BUSY, MSL and SB --> Slave has acknowledged start condition uint32_t timeout = 1000000; while ((i2c_get_sr() & 0x00030001) != 0x00030001) { if (--timeout == 0) { printf("timeout in accel_restart\n"); return; } } if (write) { // send address and write bit I2C1->DR = (addr << 1) | 0; // wait for BUSY, MSL, ADDR, TXE and TRA timeout = 1000000; while ((i2c_get_sr() & 0x00070082) != 0x00070082) { if (--timeout == 0) { printf("timeout in accel_restart write\n"); return; } } } else { // send address and read bit I2C1->DR = (addr << 1) | 1; // wait for BUSY, MSL and ADDR flags timeout = 1000000; while ((i2c_get_sr() & 0x00030002) != 0x00030002) { if (--timeout == 0) { printf("timeout in accel_restart read\n"); return; } } } } void accel_start(uint8_t addr, int write) { // wait until I2C is not busy uint32_t timeout = 1000000; while (I2C1->SR2 & I2C_SR2_BUSY) { if (--timeout == 0) { printf("timeout in accel_start\n"); return; } } // do rest of start accel_restart(addr, write); } void accel_send_byte(uint8_t data) { // send byte I2C1->DR = data; // wait for TRA, BUSY, MSL, TXE and BTF (byte transmitted) uint32_t timeout = 1000000; while ((i2c_get_sr() & 0x00070084) != 0x00070084) { if (--timeout == 0) { printf("timeout in accel_send_byte\n"); return; } } } uint8_t accel_read_ack(void) { // enable ACK of received byte I2C1->CR1 |= I2C_CR1_ACK; // wait for BUSY, MSL and RXNE (byte received) uint32_t timeout = 1000000; while ((i2c_get_sr() & 0x00030040) != 0x00030040) { if (--timeout == 0) { printf("timeout in accel_read_ack\n"); break; } } // read and return data uint8_t data = I2C1->DR; return data; } uint8_t accel_read_nack(void) { // disable ACK of received byte (to indicate end of receiving) I2C1->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK); // last byte should apparently also generate a stop condition I2C1->CR1 |= I2C_CR1_STOP; // wait for BUSY, MSL and RXNE (byte received) uint32_t timeout = 1000000; while ((i2c_get_sr() & 0x00030040) != 0x00030040) { if (--timeout == 0) { printf("timeout in accel_read_nack\n"); break; } } // read and return data uint8_t data = I2C1->DR; return data; } void accel_stop(void) { // send stop condition I2C1->CR1 |= I2C_CR1_STOP; } /******************************************************************************/ /* Micro Python bindings */ int accel_buf[12]; mp_obj_t pyb_accel_read(void) { for (int i = 0; i <= 6; i += 3) { accel_buf[0 + i] = accel_buf[0 + i + 3]; accel_buf[1 + i] = accel_buf[1 + i + 3]; accel_buf[2 + i] = accel_buf[2 + i + 3]; } accel_start(ACCEL_ADDR, 1); accel_send_byte(0); accel_restart(ACCEL_ADDR, 0); for (int i = 0; i <= 2; i++) { int v = accel_read_ack() & 0x3f; if (v & 0x20) { v |= ~0x1f; } accel_buf[9 + i] = v; } int jolt_info = accel_read_nack(); mp_obj_t data[4]; data[0] = mp_obj_new_int(accel_buf[0] + accel_buf[3] + accel_buf[6] + accel_buf[9]); data[1] = mp_obj_new_int(accel_buf[1] + accel_buf[4] + accel_buf[7] + accel_buf[10]); data[2] = mp_obj_new_int(accel_buf[2] + accel_buf[5] + accel_buf[8] + accel_buf[11]); data[3] = mp_obj_new_int(jolt_info); return mp_obj_new_tuple(4, data); } MP_DEFINE_CONST_FUN_OBJ_0(pyb_accel_read_obj, pyb_accel_read); mp_obj_t pyb_accel_read_all(void) { mp_obj_t data[11]; accel_start(ACCEL_ADDR, 1); accel_send_byte(0); accel_restart(ACCEL_ADDR, 0); for (int i = 0; i <= 9; i++) { data[i] = mp_obj_new_int(accel_read_ack()); } data[10] = mp_obj_new_int(accel_read_nack()); return mp_obj_new_tuple(11, data); } MP_DEFINE_CONST_FUN_OBJ_0(pyb_accel_read_all_obj, pyb_accel_read_all); mp_obj_t pyb_accel_write_mode(mp_obj_t o_int, mp_obj_t o_mode) { accel_start(ACCEL_ADDR, 1); accel_send_byte(6); // start at int accel_send_byte(mp_obj_get_int(o_int)); accel_send_byte(mp_obj_get_int(o_mode)); accel_stop(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pyb_accel_write_mode_obj, pyb_accel_write_mode);