//***************************************************************************** // // aes.c // // Driver for the AES module. // // Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com/ // // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // //***************************************************************************** //***************************************************************************** // //! \addtogroup AES_Advanced_Encryption_Standard_api //! @{ // //***************************************************************************** #include #include #include "inc/hw_aes.h" #include "inc/hw_dthe.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_nvic.h" #include "inc/hw_types.h" #include "aes.h" #include "debug.h" #include "interrupt.h" #define AES_BLOCK_SIZE_IN_BYTES 16 //***************************************************************************** // //! Configures the AES module. //! //! \param ui32Base is the base address of the AES module. //! \param ui32Config is the configuration of the AES module. //! //! This function configures the AES module based on the specified parameters. //! It does not change any DMA- or interrupt-related parameters. //! //! The ui32Config parameter is a bit-wise OR of a number of configuration //! flags. The valid flags are grouped based on their function. //! //! The direction of the operation is specified with only of following flags: //! //! - \b AES_CFG_DIR_ENCRYPT - Encryption mode //! - \b AES_CFG_DIR_DECRYPT - Decryption mode //! //! The key size is specified with only one of the following flags: //! //! - \b AES_CFG_KEY_SIZE_128BIT - Key size of 128 bits //! - \b AES_CFG_KEY_SIZE_192BIT - Key size of 192 bits //! - \b AES_CFG_KEY_SIZE_256BIT - Key size of 256 bits //! //! The mode of operation is specified with only one of the following flags. //! //! - \b AES_CFG_MODE_ECB - Electronic codebook mode //! - \b AES_CFG_MODE_CBC - Cipher-block chaining mode //! - \b AES_CFG_MODE_CFB - Cipher feedback mode //! - \b AES_CFG_MODE_CTR - Counter mode //! - \b AES_CFG_MODE_ICM - Integer counter mode //! - \b AES_CFG_MODE_XTS - Ciphertext stealing mode //! - \b AES_CFG_MODE_XTS_TWEAKJL - XEX-based tweaked-codebook mode with //! ciphertext stealing with previous/intermediate tweak value and j loaded //! - \b AES_CFG_MODE_XTS_K2IJL - XEX-based tweaked-codebook mode with //! ciphertext stealing with key2, i and j loaded //! - \b AES_CFG_MODE_XTS_K2ILJ0 - XEX-based tweaked-codebook mode with //! ciphertext stealing with key2 and i loaded, j = 0 //! - \b AES_CFG_MODE_F8 - F8 mode //! - \b AES_CFG_MODE_F9 - F9 mode //! - \b AES_CFG_MODE_CBCMAC - Cipher block chaining message authentication //! code mode //! - \b AES_CFG_MODE_GCM - Galois/counter mode //! - \b AES_CFG_MODE_GCM_HLY0ZERO - Galois/counter mode with GHASH with H //! loaded and Y0-encrypted forced to zero //! - \b AES_CFG_MODE_GCM_HLY0CALC - Galois/counter mode with GHASH with H //! loaded and Y0-encrypted calculated internally //! - \b AES_CFG_MODE_GCM_HY0CALC - Galois/Counter mode with autonomous GHASH //! (both H and Y0-encrypted calculated internally) //! - \b AES_CFG_MODE_CCM - Counter with CBC-MAC mode //! //! The following defines are used to specify the counter width. It is only //! required to be defined when using CTR, CCM, or GCM modes, only one of the //! following defines must be used to specify the counter width length: //! //! - \b AES_CFG_CTR_WIDTH_32 - Counter is 32 bits //! - \b AES_CFG_CTR_WIDTH_64 - Counter is 64 bits //! - \b AES_CFG_CTR_WIDTH_96 - Counter is 96 bits //! - \b AES_CFG_CTR_WIDTH_128 - Counter is 128 bits //! //! Only one of the following defines must be used to specify the length field //! for CCM operations (L): //! //! - \b AES_CFG_CCM_L_2 - 2 bytes //! - \b AES_CFG_CCM_L_4 - 4 bytes //! - \b AES_CFG_CCM_L_8 - 8 bytes //! //! Only one of the following defines must be used to specify the length of the //! authentication field for CCM operations (M) through the \e ui32Config //! argument in the AESConfigSet() function: //! //! - \b AES_CFG_CCM_M_4 - 4 bytes //! - \b AES_CFG_CCM_M_6 - 6 bytes //! - \b AES_CFG_CCM_M_8 - 8 bytes //! - \b AES_CFG_CCM_M_10 - 10 bytes //! - \b AES_CFG_CCM_M_12 - 12 bytes //! - \b AES_CFG_CCM_M_14 - 14 bytes //! - \b AES_CFG_CCM_M_16 - 16 bytes //! //! \return None. // //***************************************************************************** void AESConfigSet(uint32_t ui32Base, uint32_t ui32Config) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32Config & AES_CFG_DIR_ENCRYPT) || (ui32Config & AES_CFG_DIR_DECRYPT)); ASSERT((ui32Config & AES_CFG_KEY_SIZE_128BIT) || (ui32Config & AES_CFG_KEY_SIZE_192BIT) || (ui32Config & AES_CFG_KEY_SIZE_256BIT)); ASSERT((ui32Config & AES_CFG_MODE_ECB) || (ui32Config & AES_CFG_MODE_CBC) || (ui32Config & AES_CFG_MODE_CTR) || (ui32Config & AES_CFG_MODE_ICM) || (ui32Config & AES_CFG_MODE_CFB) || (ui32Config & AES_CFG_MODE_XTS_TWEAKJL) || (ui32Config & AES_CFG_MODE_XTS_K2IJL) || (ui32Config & AES_CFG_MODE_XTS_K2ILJ0) || (ui32Config & AES_CFG_MODE_F8) || (ui32Config & AES_CFG_MODE_F9) || (ui32Config & AES_CFG_MODE_CTR) || (ui32Config & AES_CFG_MODE_CBCMAC) || (ui32Config & AES_CFG_MODE_GCM_HLY0ZERO) || (ui32Config & AES_CFG_MODE_GCM_HLY0CALC) || (ui32Config & AES_CFG_MODE_GCM_HY0CALC) || (ui32Config & AES_CFG_MODE_CCM)); ASSERT(((ui32Config & AES_CFG_MODE_CTR) || (ui32Config & AES_CFG_MODE_GCM_HLY0ZERO) || (ui32Config & AES_CFG_MODE_GCM_HLY0CALC) || (ui32Config & AES_CFG_MODE_GCM_HY0CALC) || (ui32Config & AES_CFG_MODE_CCM)) && ((ui32Config & AES_CFG_CTR_WIDTH_32) || (ui32Config & AES_CFG_CTR_WIDTH_64) || (ui32Config & AES_CFG_CTR_WIDTH_96) || (ui32Config & AES_CFG_CTR_WIDTH_128))); ASSERT((ui32Config & AES_CFG_MODE_CCM) && ((ui32Config & AES_CFG_CCM_L_2) || (ui32Config & AES_CFG_CCM_L_4) || (ui32Config & AES_CFG_CCM_L_8)) && ((ui32Config & AES_CFG_CCM_M_4) || (ui32Config & AES_CFG_CCM_M_6) || (ui32Config & AES_CFG_CCM_M_8) || (ui32Config & AES_CFG_CCM_M_10) || (ui32Config & AES_CFG_CCM_M_12) || (ui32Config & AES_CFG_CCM_M_14) || (ui32Config & AES_CFG_CCM_M_16))); // // Backup the save context field before updating the register. // if(HWREG(ui32Base + AES_O_CTRL) & AES_CTRL_SAVE_CONTEXT) { ui32Config |= AES_CTRL_SAVE_CONTEXT; } // // Write the CTRL register with the new value // HWREG(ui32Base + AES_O_CTRL) = ui32Config; } //***************************************************************************** // //! Writes the key 1 configuration registers, which are used for encryption or //! decryption. //! //! \param ui32Base is the base address for the AES module. //! \param pui8Key is an array of bytes, containing the key to be //! configured. The least significant word in the 0th index. //! \param ui32Keysize is the size of the key, which must be one of the //! following values: \b AES_CFG_KEY_SIZE_128, \b AES_CFG_KEY_SIZE_192, or //! \b AES_CFG_KEY_SIZE_256. //! //! This function writes key 1 configuration registers based on the key //! size. This function is used in all modes. //! //! \return None. // //***************************************************************************** void AESKey1Set(uint32_t ui32Base, uint8_t *pui8Key, uint32_t ui32Keysize) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32Keysize == AES_CFG_KEY_SIZE_128BIT) || (ui32Keysize == AES_CFG_KEY_SIZE_192BIT) || (ui32Keysize == AES_CFG_KEY_SIZE_256BIT)); // // With all key sizes, the first 4 words are written. // HWREG(ui32Base + AES_O_KEY1_0) = * ((uint32_t *)(pui8Key + 0)); HWREG(ui32Base + AES_O_KEY1_1) = * ((uint32_t *)(pui8Key + 4)); HWREG(ui32Base + AES_O_KEY1_2) = * ((uint32_t *)(pui8Key + 8)); HWREG(ui32Base + AES_O_KEY1_3) = * ((uint32_t *)(pui8Key + 12)); // // The key is 192 or 256 bits. Write the next 2 words. // if(ui32Keysize != AES_CFG_KEY_SIZE_128BIT) { HWREG(ui32Base + AES_O_KEY1_4) = * ((uint32_t *)(pui8Key + 16)); HWREG(ui32Base + AES_O_KEY1_5) = * ((uint32_t *)(pui8Key + 20)); } // // The key is 256 bits. Write the last 2 words. // if(ui32Keysize == AES_CFG_KEY_SIZE_256BIT) { HWREG(ui32Base + AES_O_KEY1_6) = * ((uint32_t *)(pui8Key + 24)); HWREG(ui32Base + AES_O_KEY1_7) = * ((uint32_t *)(pui8Key + 28)); } } //***************************************************************************** // //! Writes the key 2 configuration registers, which are used for encryption or //! decryption. //! //! \param ui32Base is the base address for the AES module. //! \param pui8Key is an array of bytes, containing the key to be //! configured. The least significant word in the 0th index. //! \param ui32Keysize is the size of the key, which must be one of the //! following values: \b AES_CFG_KEY_SIZE_128, \b AES_CFG_KEY_SIZE_192, or //! \b AES_CFG_KEY_SIZE_256. //! //! This function writes the key 2 configuration registers based on the key //! size. This function is used in the F8, F9, XTS, CCM, and CBC-MAC modes. //! //! \return None. // //***************************************************************************** void AESKey2Set(uint32_t ui32Base, uint8_t *pui8Key, uint32_t ui32Keysize) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32Keysize == AES_CFG_KEY_SIZE_128BIT) || (ui32Keysize == AES_CFG_KEY_SIZE_192BIT) || (ui32Keysize == AES_CFG_KEY_SIZE_256BIT)); // // With all key sizes, the first 4 words are written. // HWREG(ui32Base + AES_O_KEY2_0) = * ((uint32_t *)(pui8Key + 0)); HWREG(ui32Base + AES_O_KEY2_1) = * ((uint32_t *)(pui8Key + 4)); HWREG(ui32Base + AES_O_KEY2_2) = * ((uint32_t *)(pui8Key + 8)); HWREG(ui32Base + AES_O_KEY2_3) = * ((uint32_t *)(pui8Key + 12)); // // The key is 192 or 256 bits. Write the next 2 words. // if(ui32Keysize != AES_CFG_KEY_SIZE_128BIT) { HWREG(ui32Base + AES_O_KEY2_4) = * ((uint32_t *)(pui8Key + 16)); HWREG(ui32Base + AES_O_KEY2_5) = * ((uint32_t *)(pui8Key + 20)); } // // The key is 256 bits. Write the last 2 words. // if(ui32Keysize == AES_CFG_KEY_SIZE_256BIT) { HWREG(ui32Base + AES_O_KEY2_6) = * ((uint32_t *)(pui8Key + 24)); HWREG(ui32Base + AES_O_KEY2_7) = * ((uint32_t *)(pui8Key + 28)); } } //***************************************************************************** // //! Writes key 3 configuration registers, which are used for encryption or //! decryption. //! //! \param ui32Base is the base address for the AES module. //! \param pui8Key is a pointer to an array bytes, containing //! the key to be configured. The least significant word is in the 0th index. //! //! This function writes the key 2 configuration registers with key 3 data //! used in CBC-MAC and F8 modes. This key is always 128 bits. //! //! \return None. // //***************************************************************************** void AESKey3Set(uint32_t ui32Base, uint8_t *pui8Key) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Write the key into the upper 4 key registers // HWREG(ui32Base + AES_O_KEY2_4) = * ((uint32_t *)(pui8Key + 0)); HWREG(ui32Base + AES_O_KEY2_5) = * ((uint32_t *)(pui8Key + 4)); HWREG(ui32Base + AES_O_KEY2_6) = * ((uint32_t *)(pui8Key + 8)); HWREG(ui32Base + AES_O_KEY2_7) = * ((uint32_t *)(pui8Key + 12)); } //***************************************************************************** // //! Writes the Initial Vector (IV) register, needed in some of the AES Modes. //! //! \param ui32Base is the base address of the AES module. //! \param pui8IVdata is an array of 16 bytes (128 bits), containing the IV //! value to be configured. The least significant word is in the 0th index. //! //! This functions writes the initial vector registers in the AES module. //! //! \return None. // //***************************************************************************** void AESIVSet(uint32_t ui32Base, uint8_t *pui8IVdata) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Write the initial vector registers. // HWREG(ui32Base + AES_O_IV_IN_0) = *((uint32_t *)(pui8IVdata+0)); HWREG(ui32Base + AES_O_IV_IN_1) = *((uint32_t *)(pui8IVdata+4)); HWREG(ui32Base + AES_O_IV_IN_2) = *((uint32_t *)(pui8IVdata+8)); HWREG(ui32Base + AES_O_IV_IN_3) = *((uint32_t *)(pui8IVdata+12)); } //***************************************************************************** // //! Reads the Initial Vector (IV) register, needed in some of the AES Modes. //! //! \param ui32Base is the base address of the AES module. //! \param pui8IVdata is pointer to an array of 16 bytes. //! //! This functions reads the initial vector registers in the AES module. //! //! \return None. // //***************************************************************************** void AESIVGet(uint32_t ui32Base, uint8_t *pui8IVdata) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Write the initial vector registers. // *((uint32_t *)(pui8IVdata+ 0)) = HWREG(ui32Base + AES_O_IV_IN_0); *((uint32_t *)(pui8IVdata+ 4)) = HWREG(ui32Base + AES_O_IV_IN_1); *((uint32_t *)(pui8IVdata+ 8)) = HWREG(ui32Base + AES_O_IV_IN_2); *((uint32_t *)(pui8IVdata+12)) = HWREG(ui32Base + AES_O_IV_IN_3); } //***************************************************************************** // //! Saves the tag registers to a user-defined location. //! //! \param ui32Base is the base address of the AES module. //! \param pui8TagData is pointer to the location that stores the tag data. //! //! This function stores the tag data for use authenticated encryption and //! decryption operations. //! //! \return None. // //***************************************************************************** void AESTagRead(uint32_t ui32Base, uint8_t *pui8TagData) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Read the tag data. // *((uint32_t *)(pui8TagData+0)) = HWREG((ui32Base + AES_O_TAG_OUT_0)); *((uint32_t *)(pui8TagData+4)) = HWREG((ui32Base + AES_O_TAG_OUT_1)); *((uint32_t *)(pui8TagData+8)) = HWREG((ui32Base + AES_O_TAG_OUT_2)); *((uint32_t *)(pui8TagData+12)) = HWREG((ui32Base + AES_O_TAG_OUT_3)); } //***************************************************************************** // //! Used to set the write crypto data length in the AES module. //! //! \param ui32Base is the base address of the AES module. //! \param ui64Length is the crypto data length in bytes. //! //! This function stores the cryptographic data length in blocks for all modes. //! Data lengths up to (2^61 - 1) bytes are allowed. For GCM, any value up //! to (2^36 - 2) bytes are allowed because a 32-bit block counter is used. For //! basic modes (ECB/CBC/CTR/ICM/CFB128), zero can be programmed into the //! length field, indicating that the length is infinite. //! //! When this function is called, the engine is triggered to start using //! this context. //! //! \note This length does not include the authentication-only data used in //! some modes. Use the AESAuthLengthSet() function to specify the //! authentication data length. //! //! \return None // //***************************************************************************** void AESDataLengthSet(uint32_t ui32Base, uint64_t ui64Length) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Write the length register by shifting the 64-bit ui64Length. // HWREG(ui32Base + AES_O_C_LENGTH_0) = (uint32_t)(ui64Length); HWREG(ui32Base + AES_O_C_LENGTH_1) = (uint32_t)(ui64Length >> 32); } //***************************************************************************** // //! Sets the optional additional authentication data (AAD) length. //! //! \param ui32Base is the base address of the AES module. //! \param ui32Length is the length in bytes. //! //! This function is only used to write the authentication data length in the //! combined modes (GCM or CCM) and XTS mode. Supported AAD lengths for CCM //! are from 0 to (2^16 - 28) bytes. For GCM, any value up to (2^32 - 1) can //! be used. For XTS mode, this register is used to load j. Loading of j is //! only required if j != 0. j represents the sequential number of the 128-bit //! blocks inside the data unit. Consequently, j must be multiplied by 16 //! when passed to this function, thereby placing the block number in //! bits [31:4] of the register. //! //! When this function is called, the engine is triggered to start using //! this context for GCM and CCM. //! //! \return None // //***************************************************************************** void AESAuthDataLengthSet(uint32_t ui32Base, uint32_t ui32Length) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Write the length into the register. // HWREG(ui32Base + AES_O_AUTH_LENGTH) = ui32Length; } //***************************************************************************** // //! Reads plaintext/ciphertext from data registers without blocking. //! This api writes data in blocks //! //! \param ui32Base is the base address of the AES module. //! \param pui8Dest is a pointer to an array of words of data. //! \param ui8Length the length can be from 1 to 16 //! //! This function reads a block of either plaintext or ciphertext out of the //! AES module. If the output data is not ready, the function returns //! false. If the read completed successfully, the function returns true. //! A block is 16 bytes or 4 words. //! //! \return true or false. // //***************************************************************************** bool AESDataReadNonBlocking(uint32_t ui32Base, uint8_t *pui8Dest, uint8_t ui8Length) { volatile uint32_t pui32Dest[4]; uint8_t ui8BytCnt; uint8_t *pui8DestTemp; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); if((ui8Length == 0)||(ui8Length>16)) { return(false); } // // Check if the output is ready before reading the data. If it not ready, // return false. // if((AES_CTRL_OUTPUT_READY & (HWREG(ui32Base + AES_O_CTRL))) == 0) { return(false); } // // Read a block of data from the data registers // pui32Dest[0] = HWREG(ui32Base + AES_O_DATA_IN_3); pui32Dest[1] = HWREG(ui32Base + AES_O_DATA_IN_2); pui32Dest[2] = HWREG(ui32Base + AES_O_DATA_IN_1); pui32Dest[3] = HWREG(ui32Base + AES_O_DATA_IN_0); // //Copy the data to a block memory // pui8DestTemp = (uint8_t *)pui32Dest; for(ui8BytCnt = 0; ui8BytCnt < ui8Length ; ui8BytCnt++) { *(pui8Dest+ui8BytCnt) = *(pui8DestTemp+ui8BytCnt); } // // Read successful, return true. // return(true); } //***************************************************************************** // //! Reads plaintext/ciphertext from data registers with blocking. //! This api writes data in blocks //! //! \param ui32Base is the base address of the AES module. //! \param pui8Dest is a pointer to an array of words. //! \param ui8Length is the length of data in bytes to be read. //! ui8Length can be from 1 to 16 //! //! This function reads a block of either plaintext or ciphertext out of the //! AES module. If the output is not ready, the function waits until it //! is ready. A block is 16 bytes or 4 words. //! //! \return None. // //***************************************************************************** void AESDataRead(uint32_t ui32Base, uint8_t *pui8Dest, uint8_t ui8Length) { volatile uint32_t pui32Dest[4]; uint8_t ui8BytCnt; uint8_t *pui8DestTemp; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); if((ui8Length == 0)||(ui8Length>16)) { return; } // // Wait for the output to be ready before reading the data. // while((AES_CTRL_OUTPUT_READY & (HWREG(ui32Base + AES_O_CTRL))) == 0) { } // // Read a block of data from the data registers // pui32Dest[0] = HWREG(ui32Base + AES_O_DATA_IN_3); pui32Dest[1] = HWREG(ui32Base + AES_O_DATA_IN_2); pui32Dest[2] = HWREG(ui32Base + AES_O_DATA_IN_1); pui32Dest[3] = HWREG(ui32Base + AES_O_DATA_IN_0); // //Copy the data to a block memory // pui8DestTemp = (uint8_t *)pui32Dest; for(ui8BytCnt = 0; ui8BytCnt < ui8Length ; ui8BytCnt++) { *(pui8Dest+ui8BytCnt) = *(pui8DestTemp+ui8BytCnt); } return; } //***************************************************************************** // //! Writes plaintext/ciphertext to data registers without blocking. //! //! \param ui32Base is the base address of the AES module. //! \param pui8Src is a pointer to an array of words of data. //! \param ui8Length the length can be from 1 to 16 //! //! This function writes a block of either plaintext or ciphertext into the //! AES module. If the input is not ready, the function returns false //! If the write completed successfully, the function returns true. //! //! \return True or false. // //***************************************************************************** bool AESDataWriteNonBlocking(uint32_t ui32Base, uint8_t *pui8Src, uint8_t ui8Length) { volatile uint32_t pui32Src[4]={0,0,0,0}; uint8_t ui8BytCnt; uint8_t *pui8SrcTemp; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); if((ui8Length == 0)||(ui8Length>16)) { return(false); } // // Check if the input is ready. If not, then return false. // if(!(AES_CTRL_INPUT_READY & (HWREG(ui32Base + AES_O_CTRL)))) { return(false); } // //Copy the data to a block memory // pui8SrcTemp = (uint8_t *)pui32Src; for(ui8BytCnt = 0; ui8BytCnt < ui8Length ; ui8BytCnt++) { *(pui8SrcTemp+ui8BytCnt) = *(pui8Src+ui8BytCnt); } // // Write a block of data into the data registers. // HWREG(ui32Base + AES_O_DATA_IN_3) = pui32Src[0]; HWREG(ui32Base + AES_O_DATA_IN_2) = pui32Src[1]; HWREG(ui32Base + AES_O_DATA_IN_1) = pui32Src[2]; HWREG(ui32Base + AES_O_DATA_IN_0) = pui32Src[3]; // // Write successful, return true. // return(true); } //***************************************************************************** // //! Writes plaintext/ciphertext to data registers with blocking. //! //! \param ui32Base is the base address of the AES module. //! \param pui8Src is a pointer to an array of bytes. //! \param ui8Length the length can be from 1 to 16 //! //! This function writes a block of either plaintext or ciphertext into the //! AES module. If the input is not ready, the function waits until it is //! ready before performing the write. //! //! \return None. // //***************************************************************************** void AESDataWrite(uint32_t ui32Base, uint8_t *pui8Src, uint8_t ui8Length) { volatile uint32_t pui32Src[4]={0,0,0,0}; uint8_t ui8BytCnt; uint8_t *pui8SrcTemp; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); if((ui8Length == 0)||(ui8Length>16)) { return; } // // Wait for input ready. // while((AES_CTRL_INPUT_READY & (HWREG(ui32Base + AES_O_CTRL))) == 0) { } // //Copy the data to a block memory // pui8SrcTemp = (uint8_t *)pui32Src; for(ui8BytCnt = 0; ui8BytCnt < ui8Length ; ui8BytCnt++) { *(pui8SrcTemp+ui8BytCnt) = *(pui8Src+ui8BytCnt); } // // Write a block of data into the data registers. // HWREG(ui32Base + AES_O_DATA_IN_3) = pui32Src[0]; HWREG(ui32Base + AES_O_DATA_IN_2) = pui32Src[1]; HWREG(ui32Base + AES_O_DATA_IN_1) = pui32Src[2]; HWREG(ui32Base + AES_O_DATA_IN_0) = pui32Src[3]; } //***************************************************************************** // //! Used to process(transform) blocks of data, either encrypt or decrypt it. //! //! \param ui32Base is the base address of the AES module. //! \param pui8Src is a pointer to the memory location where the input data //! is stored. //! \param pui8Dest is a pointer to the memory location output is written. //! \param ui32Length is the length of the cryptographic data in bytes. //! //! This function iterates the encryption or decryption mechanism number over //! the data length. Before calling this function, ensure that the AES //! module is properly configured the key, data size, mode, etc. Only ECB, //! CBC, CTR, ICM, CFB, XTS and F8 operating modes should be used. The data //! is processed in 4-word (16-byte) blocks. //! //! \note This function only supports values of \e ui32Length less than 2^32, //! because the memory size is restricted to between 0 to 2^32 bytes. //! //! \return Returns true if data was processed successfully. Returns false //! if data processing failed. // //***************************************************************************** bool AESDataProcess(uint32_t ui32Base, uint8_t *pui8Src, uint8_t *pui8Dest, uint32_t ui32Length) { uint32_t ui32Count, ui32BlkCount, ui32ByteCount; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Write the length register first, which triggers the engine to start // using this context. // AESDataLengthSet(AES_BASE, (uint64_t) ui32Length); // // Now loop until the blocks are written. // ui32BlkCount = ui32Length/16; for(ui32Count = 0; ui32Count < ui32BlkCount; ui32Count += 1) { // // Write the data registers. // AESDataWrite(ui32Base, pui8Src + (ui32Count*16) ,16); // // Read the data registers. // AESDataRead(ui32Base, pui8Dest + (ui32Count*16) ,16); } // //Now handle the residue bytes // ui32ByteCount = ui32Length%16; if(ui32ByteCount) { // // Write the data registers. // AESDataWrite(ui32Base, pui8Src + (16*ui32BlkCount) ,ui32ByteCount); // // Read the data registers. // AESDataRead(ui32Base, pui8Dest + (16*ui32BlkCount) ,ui32ByteCount); } // // Return true to indicate successful completion of the function. // return(true); } //***************************************************************************** // //! Used to generate message authentication code (MAC) using CBC-MAC and F9 mode. //! //! \param ui32Base is the base address of the AES module. //! \param pui8Src is a pointer to the memory location where the input data //! is stored. //! \param ui32Length is the length of the cryptographic data in bytes. //! \param pui8Tag is a pointer to a 4-word array where the hash tag is //! written. //! //! This function processes data to produce a hash tag that can be used tor //! authentication. Before calling this function, ensure that the AES //! module is properly configured the key, data size, mode, etc. Only //! CBC-MAC and F9 modes should be used. //! //! \return Returns true if data was processed successfully. Returns false //! if data processing failed. // //***************************************************************************** bool AESDataMAC(uint32_t ui32Base, uint8_t *pui8Src, uint32_t ui32Length, uint8_t *pui8Tag) { uint32_t ui32Count, ui32BlkCount, ui32ByteCount; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Write the length register first, which triggers the engine to start // using this context. // AESDataLengthSet(AES_BASE, (uint64_t) ui32Length); // // Write the data registers. // // // Now loop until the blocks are written. // ui32BlkCount = ui32Length/16; for(ui32Count = 0; ui32Count < ui32BlkCount; ui32Count += 1) { // // Write the data registers. // AESDataWrite(ui32Base, pui8Src + ui32Count*16 ,16); } // //Now handle the residue bytes // ui32ByteCount = ui32Length%16; if(ui32ByteCount) { // // Write the data registers. // AESDataWrite(ui32Base, pui8Src + (ui32Count*ui32BlkCount) ,ui32ByteCount); } // // Wait for the context data regsiters to be ready. // while((AES_CTRL_SVCTXTRDY & (HWREG(AES_BASE + AES_O_CTRL))) == 0) { } // // Read the hash tag value. // AESTagRead(AES_BASE, pui8Tag); // // Return true to indicate successful completion of the function. // return(true); } //***************************************************************************** // //! Used for Authenticated encryption (AE) of the data. Processes and authenticates blocks of data, //! either encrypt the data or decrypt the data. //! //! \param ui32Base is the base address of the AES module. //! \param pui8Src is a pointer to the memory location where the input data //! is stored. The data must be padded to the 16-byte boundary. //! \param pui8Dest is a pointer to the memory location output is written. //! The space for written data must be rounded up to the 16-byte boundary. //! \param ui32Length is the length of the cryptographic data in bytes. //! \param pui8AuthSrc is a pointer to the memory location where the //! additional authentication data is stored. The data must be padded to the //! 16-byte boundary. //! \param ui32AuthLength is the length of the additional authentication //! data in bytes. //! \param pui8Tag is a pointer to a 4-word array where the hash tag is //! written. //! //! This function encrypts or decrypts blocks of data in addition to //! authentication data. A hash tag is also produced. Before calling this //! function, ensure that the AES module is properly configured the key, //! data size, mode, etc. Only CCM and GCM modes should be used. //! //! \return Returns true if data was processed successfully. Returns false //! if data processing failed. // //***************************************************************************** bool AESDataProcessAE(uint32_t ui32Base, uint8_t *pui8Src, uint8_t *pui8Dest, uint32_t ui32Length, uint8_t *pui8AuthSrc, uint32_t ui32AuthLength, uint8_t *pui8Tag) { uint32_t ui32Count; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Set the data length. // AESDataLengthSet(AES_BASE, (uint64_t) ui32Length); // // Set the additional authentication data length. // AESAuthDataLengthSet(AES_BASE, ui32AuthLength); // // Now loop until the authentication data blocks are written. // for(ui32Count = 0; ui32Count < ui32AuthLength; ui32Count += 16) { // // Write the data registers. // AESDataWrite(ui32Base, pui8AuthSrc + (ui32Count),16); } // // Now loop until the data blocks are written. // for(ui32Count = 0; ui32Count < ui32Length; ui32Count += 16) { // // Write the data registers. // AESDataWrite(ui32Base, pui8Src + (ui32Count),16); // // // Read the data registers. // AESDataRead(ui32Base, pui8Dest + (ui32Count),16); } // // Wait for the context data regsiters to be ready. // while((AES_CTRL_SVCTXTRDY & (HWREG(AES_BASE + AES_O_CTRL))) == 0) { } // // Read the hash tag value. // AESTagRead(AES_BASE, pui8Tag); // // Return true to indicate successful completion of the function. // return(true); } //***************************************************************************** // //! Returns the current AES module interrupt status. //! //! \param ui32Base is the base address of the AES module. //! \param bMasked is \b false if the raw interrupt status is required and //! \b true if the masked interrupt status is required. //! //! \return Returns a bit mask of the interrupt sources, which is a logical OR //! of any of the following: //! //! - \b AES_INT_CONTEXT_IN - Context interrupt //! - \b AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt. //! - \b AES_INT_DATA_IN - Data input interrupt //! - \b AES_INT_DATA_OUT - Data output interrupt //! - \b AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt //! - \b AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done //! interrupt //! - \b AES_INT_DMA_DATA_IN - Data input DMA done interrupt //! - \b AES_INT_DMA_DATA_OUT - Data output DMA done interrupt // //***************************************************************************** uint32_t AESIntStatus(uint32_t ui32Base, bool bMasked) { uint32_t ui32Temp; uint32_t ui32IrqEnable; // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Read the IRQ status register and return the value. // if(bMasked) { ui32Temp = HWREG(DTHE_BASE + DTHE_O_AES_MIS); ui32IrqEnable = HWREG(ui32Base + AES_O_IRQENABLE); return((HWREG(ui32Base + AES_O_IRQSTATUS) & ui32IrqEnable) | ((ui32Temp & 0x0000000F) << 16)); } else { ui32Temp = HWREG(DTHE_BASE + DTHE_O_AES_RIS); return(HWREG(ui32Base + AES_O_IRQSTATUS) | ((ui32Temp & 0x0000000F) << 16)); } } //***************************************************************************** // //! Enables AES module interrupts. //! //! \param ui32Base is the base address of the AES module. //! \param ui32IntFlags is a bit mask of the interrupt sources to enable. //! //! This function enables the interrupts in the AES module. The \e ui32IntFlags //! parameter is the logical OR of any of the following: //! //! - \b AES_INT_CONTEXT_IN - Context interrupt //! - \b AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt //! - \b AES_INT_DATA_IN - Data input interrupt //! - \b AES_INT_DATA_OUT - Data output interrupt //! - \b AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt //! - \b AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done //! interrupt //! - \b AES_INT_DMA_DATA_IN - Data input DMA done interrupt //! - \b AES_INT_DMA_DATA_OUT - Data output DMA done interrupt //! //! \note Interrupts that have been previously been enabled are not disabled //! when this function is called. //! //! \return None. // //***************************************************************************** void AESIntEnable(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32IntFlags == AES_INT_CONTEXT_IN) || (ui32IntFlags == AES_INT_CONTEXT_OUT) || (ui32IntFlags == AES_INT_DATA_IN) || (ui32IntFlags == AES_INT_DATA_OUT) || (ui32IntFlags == AES_INT_DMA_CONTEXT_IN) || (ui32IntFlags == AES_INT_DMA_CONTEXT_OUT) || (ui32IntFlags == AES_INT_DMA_DATA_IN) || (ui32IntFlags == AES_INT_DMA_DATA_OUT)); // // Set the flags. // HWREG(DTHE_BASE + DTHE_O_AES_IM) &= ~((ui32IntFlags & 0x000F0000) >> 16); HWREG(ui32Base + AES_O_IRQENABLE) |= ui32IntFlags & 0x0000ffff; } //***************************************************************************** // //! Disables AES module interrupts. //! //! \param ui32Base is the base address of the AES module. //! \param ui32IntFlags is a bit mask of the interrupt sources to disable. //! //! This function disables the interrupt sources in the AES module. The //! \e ui32IntFlags parameter is the logical OR of any of the following: //! //! - \b AES_INT_CONTEXT_IN - Context interrupt //! - \b AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt //! - \b AES_INT_DATA_IN - Data input interrupt //! - \b AES_INT_DATA_OUT - Data output interrupt //! - \b AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt //! - \b AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done //! interrupt //! - \b AES_INT_DMA_DATA_IN - Data input DMA done interrupt //! - \b AES_INT_DMA_DATA_OUT - Data output DMA done interrupt //! //! \note The DMA done interrupts are the only interrupts that can be cleared. //! The remaining interrupts can be disabled instead using AESIntDisable(). //! //! \return None. // //***************************************************************************** void AESIntDisable(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32IntFlags == AES_INT_CONTEXT_IN) || (ui32IntFlags == AES_INT_CONTEXT_OUT) || (ui32IntFlags == AES_INT_DATA_IN) || (ui32IntFlags == AES_INT_DATA_OUT) || (ui32IntFlags == AES_INT_DMA_CONTEXT_IN) || (ui32IntFlags == AES_INT_DMA_CONTEXT_OUT) || (ui32IntFlags == AES_INT_DMA_DATA_IN) || (ui32IntFlags == AES_INT_DMA_DATA_OUT)); // // Clear the flags. // HWREG(DTHE_BASE + DTHE_O_AES_IM) |= ((ui32IntFlags & 0x000F0000) >> 16); HWREG(ui32Base + AES_O_IRQENABLE) &= ~(ui32IntFlags & 0x0000ffff); } //***************************************************************************** // //! Clears AES module interrupts. //! //! \param ui32Base is the base address of the AES module. //! \param ui32IntFlags is a bit mask of the interrupt sources to disable. //! //! This function clears the interrupt sources in the AES module. The //! \e ui32IntFlags parameter is the logical OR of any of the following: //! //! - \b AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt //! - \b AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done //! interrupt //! - \b AES_INT_DMA_DATA_IN - Data input DMA done interrupt //! - \b AES_INT_DMA_DATA_OUT - Data output DMA done interrupt //! //! \note Only the DMA done interrupts can be cleared. The remaining //! interrupts should be disabled with AESIntDisable(). //! //! \return None. // //***************************************************************************** void AESIntClear(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32IntFlags == AES_INT_DMA_CONTEXT_IN) || (ui32IntFlags == AES_INT_DMA_CONTEXT_OUT) || (ui32IntFlags == AES_INT_DMA_DATA_IN) || (ui32IntFlags == AES_INT_DMA_DATA_OUT)); HWREG(DTHE_BASE + DTHE_O_AES_IC) = ((ui32IntFlags >> 16) & 0x0000000F); } //***************************************************************************** // //! Registers an interrupt handler for the AES module. //! //! \param ui32Base is the base address of the AES module. //! \param pfnHandler is a pointer to the function to be called when the //! enabled AES interrupts occur. //! //! This function registers the interrupt handler in the interrupt vector //! table, and enables AES interrupts on the interrupt controller; specific AES //! interrupt sources must be enabled using AESIntEnable(). The interrupt //! handler being registered must clear the source of the interrupt using //! AESIntClear(). //! //! If the application is using a static interrupt vector table stored in //! flash, then it is not necessary to register the interrupt handler this way. //! Instead, IntEnable() is used to enable AES interrupts on the //! interrupt controller. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void AESIntRegister(uint32_t ui32Base, void(*pfnHandler)(void)) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Register the interrupt handler. // IntRegister(INT_AES, pfnHandler); // // Enable the interrupt // IntEnable(INT_AES); } //***************************************************************************** // //! Unregisters an interrupt handler for the AES module. //! //! \param ui32Base is the base address of the AES module. //! //! This function unregisters the previously registered interrupt handler and //! disables the interrupt in the interrupt controller. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void AESIntUnregister(uint32_t ui32Base) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); // // Disable the interrupt. // IntDisable(INT_AES); // // Unregister the interrupt handler. // IntUnregister(INT_AES); } //***************************************************************************** // //! Enables uDMA requests for the AES module. //! //! \param ui32Base is the base address of the AES module. //! \param ui32Flags is a bit mask of the uDMA requests to be enabled. //! //! This function enables the uDMA request sources in the AES module. //! The \e ui32Flags parameter is the logical OR of any of the following: //! //! - \b AES_DMA_DATA_IN //! - \b AES_DMA_DATA_OUT //! - \b AES_DMA_CONTEXT_IN //! - \b AES_DMA_CONTEXT_OUT //! //! \return None. // //***************************************************************************** void AESDMAEnable(uint32_t ui32Base, uint32_t ui32Flags) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32Flags == AES_DMA_DATA_IN) || (ui32Flags == AES_DMA_DATA_OUT) || (ui32Flags == AES_DMA_CONTEXT_IN) || (ui32Flags == AES_DMA_CONTEXT_OUT)); // // Set the flags in the current register value. // HWREG(ui32Base + AES_O_SYSCONFIG) |= ui32Flags; } //***************************************************************************** // //! Disables uDMA requests for the AES module. //! //! \param ui32Base is the base address of the AES module. //! \param ui32Flags is a bit mask of the uDMA requests to be disabled. //! //! This function disables the uDMA request sources in the AES module. //! The \e ui32Flags parameter is the logical OR of any of the //! following: //! //! - \b AES_DMA_DATA_IN //! - \b AES_DMA_DATA_OUT //! - \b AES_DMA_CONTEXT_IN //! - \b AES_DMA_CONTEXT_OUT //! //! \return None. // //***************************************************************************** void AESDMADisable(uint32_t ui32Base, uint32_t ui32Flags) { // // Check the arguments. // ASSERT(ui32Base == AES_BASE); ASSERT((ui32Flags == AES_DMA_DATA_IN) || (ui32Flags == AES_DMA_DATA_OUT) || (ui32Flags == AES_DMA_CONTEXT_IN) || (ui32Flags == AES_DMA_CONTEXT_OUT)); // // Clear the flags in the current register value. // HWREG(ui32Base + AES_O_SYSCONFIG) &= ~ui32Flags; } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************