/* * This file is part of the MicroPython project, http://micropython.org/ * * This file initialises the USB (tinyUSB) and USART (SERCOM). Board USART settings * are set in 'boards//mpconfigboard.h. * * IMPORTANT: Please refer to "I/O Multiplexing and Considerations" chapters * in device datasheets for I/O Pin functions and assignments. * * The MIT License (MIT) * * Copyright (c) 2019 Damien P. George * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "modmachine.h" #include "samd_soc.h" #include "sam.h" #include "tusb.h" #include "mphalport.h" extern void machine_rtc_start(bool force); static void usb_init(void) { // Init USB clock #if defined(MCU_SAMD21) GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK5 | GCLK_CLKCTRL_ID_USB; PM->AHBMASK.bit.USB_ = 1; PM->APBBMASK.bit.USB_ = 1; uint8_t alt = 6; // alt G, USB #elif defined(MCU_SAMD51) GCLK->PCHCTRL[USB_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK5; while (GCLK->PCHCTRL[USB_GCLK_ID].bit.CHEN == 0) { } MCLK->AHBMASK.bit.USB_ = 1; MCLK->APBBMASK.bit.USB_ = 1; uint8_t alt = 7; // alt H, USB #endif // Init USB pins PORT->Group[0].DIRSET.reg = 1 << 25 | 1 << 24; PORT->Group[0].OUTCLR.reg = 1 << 25 | 1 << 24; PORT->Group[0].PMUX[12].reg = alt << 4 | alt; PORT->Group[0].PINCFG[24].reg = PORT_PINCFG_PMUXEN; PORT->Group[0].PINCFG[25].reg = PORT_PINCFG_PMUXEN; } // Initialize the µs counter on TC 0/1 or TC4/5 void init_us_counter(void) { #if defined(MCU_SAMD21) PM->APBCMASK.bit.TC3_ = 1; // Enable TC3 clock PM->APBCMASK.bit.TC4_ = 1; // Enable TC4 clock // Select multiplexer generic clock source and enable. GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK3 | GCLK_CLKCTRL_ID_TC4_TC5; // Wait while it updates synchronously. while (GCLK->STATUS.bit.SYNCBUSY) { } // configure the timer TC4->COUNT32.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT32_Val; TC4->COUNT32.CTRLA.bit.RUNSTDBY = 1; TC4->COUNT32.CTRLA.bit.ENABLE = 1; while (TC4->COUNT32.STATUS.bit.SYNCBUSY) { } TC4->COUNT32.READREQ.reg = TC_READREQ_RREQ | TC_READREQ_RCONT | 0x10; while (TC4->COUNT32.STATUS.bit.SYNCBUSY) { } // Enable the IRQ TC4->COUNT32.INTENSET.reg = TC_INTENSET_OVF; NVIC_EnableIRQ(TC4_IRQn); #elif defined(MCU_SAMD51) MCLK->APBAMASK.bit.TC0_ = 1; // Enable TC0 clock MCLK->APBAMASK.bit.TC1_ = 1; // Enable TC1 clock // Peripheral channel 9 is driven by GCLK3, 8 MHz. GCLK->PCHCTRL[TC0_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK3 | GCLK_PCHCTRL_CHEN; while (GCLK->PCHCTRL[TC0_GCLK_ID].bit.CHEN == 0) { } // configure the timer TC0->COUNT32.CTRLA.bit.PRESCALER = 0; TC0->COUNT32.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT32_Val; TC0->COUNT32.CTRLA.bit.RUNSTDBY = 1; TC0->COUNT32.CTRLA.bit.ENABLE = 1; while (TC0->COUNT32.SYNCBUSY.bit.ENABLE) { } // Enable the IRQ TC0->COUNT32.INTENSET.reg = TC_INTENSET_OVF; NVIC_EnableIRQ(TC0_IRQn); #endif } void samd_init(void) { init_clocks(get_cpu_freq()); init_us_counter(); usb_init(); #if defined(MCU_SAMD51) mp_hal_ticks_cpu_enable(); #endif machine_rtc_start(false); } #if MICROPY_PY_MACHINE_I2C || MICROPY_PY_MACHINE_SPI || MICROPY_PY_MACHINE_UART Sercom *sercom_instance[] = SERCOM_INSTS; MP_REGISTER_ROOT_POINTER(void *sercom_table[SERCOM_INST_NUM]); // Common Sercom functions used by all Serial devices void sercom_enable(Sercom *uart, int state) { uart->USART.CTRLA.bit.ENABLE = state; // Set the state on/off // Wait for the Registers to update. while (uart->USART.SYNCBUSY.bit.ENABLE) { } } void sercom_deinit_all(void) { for (int i = 0; i < SERCOM_INST_NUM; i++) { Sercom *uart = sercom_instance[i]; uart->USART.INTENCLR.reg = 0xff; sercom_register_irq(i, NULL); sercom_enable(uart, 0); MP_STATE_PORT(sercom_table[i]) = NULL; } } #endif void samd_get_unique_id(samd_unique_id_t *id) { // Atmel SAM D21E / SAM D21G / SAM D21J // SMART ARM-Based Microcontroller // DATASHEET // 9.6 (SAMD51) or 9.3.3 (or 10.3.3 depending on which manual)(SAMD21) Serial Number // // EXAMPLE (SAMD21) // ---------------- // OpenOCD: // Word0: // > at91samd21g18.cpu mdw 0x0080A00C 1 // 0x0080a00c: 6e27f15f // Words 1-3: // > at91samd21g18.cpu mdw 0x0080A040 3 // 0x0080a040: 50534b54 332e3120 ff091645 // // MicroPython (this code and same order as shown in Arduino IDE) // >>> binascii.hexlify(machine.unique_id()) // b'6e27f15f50534b54332e3120ff091645' #if defined(MCU_SAMD21) uint32_t *id_addresses[4] = {(uint32_t *)0x0080A00C, (uint32_t *)0x0080A040, (uint32_t *)0x0080A044, (uint32_t *)0x0080A048}; #elif defined(MCU_SAMD51) uint32_t *id_addresses[4] = {(uint32_t *)0x008061FC, (uint32_t *)0x00806010, (uint32_t *)0x00806014, (uint32_t *)0x00806018}; #endif for (int i = 0; i < 4; i++) { for (int k = 0; k < 4; k++) { // 'Reverse' the read bytes into a 32 bit word (Consistent with Arduino) id->bytes[4 * i + k] = (*(id_addresses[i]) >> (24 - k * 8)) & 0xff; } } }