/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE. #include "py/mphal.h" #include "py/ringbuf.h" #include "samd_soc.h" #include "pin_af.h" #define DEFAULT_UART_BAUDRATE (115200) #define DEFAULT_BUFFER_SIZE (256) #define MIN_BUFFER_SIZE (32) #define MAX_BUFFER_SIZE (32766) #define FLOW_CONTROL_RTS (1) #define FLOW_CONTROL_CTS (2) #define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS typedef struct _machine_uart_obj_t { mp_obj_base_t base; uint8_t id; uint32_t baudrate; uint8_t bits; uint8_t parity; uint8_t stop; uint8_t flow_control; uint8_t tx; uint8_t rx; sercom_pad_config_t tx_pad_config; sercom_pad_config_t rx_pad_config; #if MICROPY_HW_UART_RTSCTS uint8_t rts; uint8_t cts; sercom_pad_config_t rts_pad_config; sercom_pad_config_t cts_pad_config; #endif uint16_t timeout; // timeout waiting for first char (in ms) uint16_t timeout_char; // timeout waiting between chars (in ms) bool new; ringbuf_t read_buffer; #if MICROPY_HW_UART_TXBUF ringbuf_t write_buffer; #endif } machine_uart_obj_t; static const char *_parity_name[] = {"None", "", "0", "1"}; // Is defined as 0, 2, 3 // Irq handler // take all bytes from the fifo and store them in the buffer static void uart_drain_rx_fifo(machine_uart_obj_t *self, Sercom *uart) { while (uart->USART.INTFLAG.bit.RXC != 0) { if (ringbuf_free(&self->read_buffer) > 0) { // get a byte from uart and put into the buffer ringbuf_put(&(self->read_buffer), uart->USART.DATA.bit.DATA); } else { // if the buffer is full, disable the RX interrupt // allowing RTS to come up. It will be re-enabled by the next read uart->USART.INTENCLR.reg = SERCOM_USART_INTENSET_RXC; break; } } } void common_uart_irq_handler(int uart_id) { machine_uart_obj_t *self = MP_STATE_PORT(sercom_table[uart_id]); // Handle IRQ if (self != NULL) { Sercom *uart = sercom_instance[self->id]; if (uart->USART.INTFLAG.bit.RXC != 0) { // Now handler the incoming data uart_drain_rx_fifo(self, uart); } else if (uart->USART.INTFLAG.bit.DRE != 0) { #if MICROPY_HW_UART_TXBUF // handle the outgoing data if (ringbuf_avail(&self->write_buffer) > 0) { uart->USART.DATA.bit.DATA = ringbuf_get(&self->write_buffer); } else { // Stop the interrupt if there is no more data uart->USART.INTENCLR.reg = SERCOM_USART_INTENCLR_DRE; } #endif } else { // Disable the other interrupts, if set by error uart->USART.INTENCLR.reg = (uint8_t) ~(SERCOM_USART_INTENCLR_DRE | SERCOM_USART_INTENCLR_RXC); } } } // Configure the Sercom device static void machine_sercom_configure(machine_uart_obj_t *self) { Sercom *uart = sercom_instance[self->id]; // Reset (clear) the peripheral registers. while (uart->USART.SYNCBUSY.bit.SWRST) { } uart->USART.CTRLA.bit.SWRST = 1; // Reset all Registers, disable peripheral while (uart->USART.SYNCBUSY.bit.SWRST) { } uint8_t txpo = self->tx_pad_config.pad_nr; #if defined(MCU_SAMD21) if (self->tx_pad_config.pad_nr == 2) { // Map pad 2 to TXPO = 1 txpo = 1; } else #endif if (self->tx_pad_config.pad_nr != 0) { mp_raise_ValueError(MP_ERROR_TEXT("invalid UART pin")); } #if MICROPY_HW_UART_RTSCTS if ((self->flow_control & FLOW_CONTROL_RTS) && self->rts_pad_config.pad_nr == 2) { txpo = 2; mp_hal_set_pin_mux(self->rts, self->rts_pad_config.alt_fct); } if ((self->flow_control & FLOW_CONTROL_CTS) && self->cts_pad_config.pad_nr == 3) { txpo = 2; mp_hal_set_pin_mux(self->cts, self->cts_pad_config.alt_fct); } #endif uart->USART.CTRLA.reg = SERCOM_USART_CTRLA_DORD // Data order | SERCOM_USART_CTRLA_FORM(self->parity != 0 ? 1 : 0) // Enable parity or not | SERCOM_USART_CTRLA_RXPO(self->rx_pad_config.pad_nr) // Set Pad# | SERCOM_USART_CTRLA_TXPO(txpo) // Set Pad# | SERCOM_USART_CTRLA_MODE(1) // USART with internal clock ; uart->USART.CTRLB.reg = SERCOM_USART_CTRLB_RXEN // Enable Rx & Tx | SERCOM_USART_CTRLB_TXEN | ((self->parity & 1) << SERCOM_USART_CTRLB_PMODE_Pos) | (self->stop << SERCOM_USART_CTRLB_SBMODE_Pos) | SERCOM_USART_CTRLB_CHSIZE((self->bits & 7) | (self->bits & 1)) ; while (uart->USART.SYNCBUSY.bit.CTRLB) { } // USART is driven by the clock of GCLK Generator 2, freq by get_peripheral_freq() // baud rate; 65536 * (1 - 16 * 115200/bus_freq) uint32_t baud = 65536 - ((uint64_t)(65536 * 16) * self->baudrate + get_peripheral_freq() / 2) / get_peripheral_freq(); uart->USART.BAUD.bit.BAUD = baud; // Set Baud sercom_register_irq(self->id, &common_uart_irq_handler); // Enable RXC interrupt uart->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC; #if defined(MCU_SAMD21) NVIC_EnableIRQ(SERCOM0_IRQn + self->id); #elif defined(MCU_SAMD51) NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 2); #endif #if MICROPY_HW_UART_TXBUF // Enable DRE interrupt // SAMD21 has just 1 IRQ for all USART events, so no need for an additional NVIC enable #if defined(MCU_SAMD51) NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 0); #endif #endif sercom_enable(uart, 1); } void machine_uart_set_baudrate(mp_obj_t self_in, uint32_t baudrate) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); self->baudrate = baudrate; machine_sercom_configure(self); } static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, " "timeout=%u, timeout_char=%u, rxbuf=%d" #if MICROPY_HW_UART_TXBUF ", txbuf=%d" #endif #if MICROPY_HW_UART_RTSCTS ", rts=%q, cts=%q" #endif ")", self->id, self->baudrate, self->bits, _parity_name[self->parity], self->stop + 1, self->timeout, self->timeout_char, self->read_buffer.size - 1 #if MICROPY_HW_UART_TXBUF , self->write_buffer.size - 1 #endif #if MICROPY_HW_UART_RTSCTS , self->rts != 0xff ? pin_find_by_id(self->rts)->name : MP_QSTR_None , self->cts != 0xff ? pin_find_by_id(self->cts)->name : MP_QSTR_None #endif ); } static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_timeout, ARG_timeout_char, ARG_rxbuf, ARG_txbuf, ARG_rts, ARG_cts }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, #if MICROPY_HW_UART_TXBUF { MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, #endif #if MICROPY_HW_UART_RTSCTS { MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, #endif }; // Parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Set baudrate if configured. if (args[ARG_baudrate].u_int > 0) { self->baudrate = args[ARG_baudrate].u_int; } // Set bits if configured. if (args[ARG_bits].u_int > 0) { self->bits = args[ARG_bits].u_int; } // Set parity if configured. if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) { if (args[ARG_parity].u_obj == mp_const_none) { self->parity = 0; } else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) { self->parity = 1; // odd } else { self->parity = 2; // even } } // Set stop bits if configured. if (args[ARG_stop].u_int > 0) { self->stop = (args[ARG_stop].u_int - 1) & 1; } // Set TX/RX pins if configured. if (args[ARG_tx].u_obj != mp_const_none) { self->tx = mp_hal_get_pin_obj(args[ARG_tx].u_obj); } if (args[ARG_rx].u_obj != mp_const_none) { self->rx = mp_hal_get_pin_obj(args[ARG_rx].u_obj); } self->flow_control = 0; #if MICROPY_HW_UART_RTSCTS // Set RTS/CTS pins if configured. if (args[ARG_rts].u_obj != mp_const_none) { self->rts = mp_hal_get_pin_obj(args[ARG_rts].u_obj); self->rts_pad_config = get_sercom_config(self->rts, self->id); self->flow_control = FLOW_CONTROL_RTS; } if (args[ARG_cts].u_obj != mp_const_none) { self->cts = mp_hal_get_pin_obj(args[ARG_cts].u_obj); self->cts_pad_config = get_sercom_config(self->cts, self->id); self->flow_control |= FLOW_CONTROL_CTS; } // rts only flow control is not allowed. Otherwise the state of the // cts pin is undefined. if (self->flow_control == FLOW_CONTROL_RTS) { mp_raise_ValueError(MP_ERROR_TEXT("cts missing for flow control")); } #endif // Set timeout if configured. if (args[ARG_timeout].u_int >= 0) { self->timeout = args[ARG_timeout].u_int; } // Set timeout_char if configured. if (args[ARG_timeout_char].u_int >= 0) { self->timeout_char = args[ARG_timeout_char].u_int; } // Set the RX buffer size if configured. size_t rxbuf_len = DEFAULT_BUFFER_SIZE; if (args[ARG_rxbuf].u_int > 0) { rxbuf_len = args[ARG_rxbuf].u_int; if (rxbuf_len < MIN_BUFFER_SIZE) { rxbuf_len = MIN_BUFFER_SIZE; } else if (rxbuf_len > MAX_BUFFER_SIZE) { mp_raise_ValueError(MP_ERROR_TEXT("rxbuf too large")); } } #if MICROPY_HW_UART_TXBUF // Set the TX buffer size if configured. size_t txbuf_len = DEFAULT_BUFFER_SIZE; if (args[ARG_txbuf].u_int > 0) { txbuf_len = args[ARG_txbuf].u_int; if (txbuf_len < MIN_BUFFER_SIZE) { txbuf_len = MIN_BUFFER_SIZE; } else if (txbuf_len > MAX_BUFFER_SIZE) { mp_raise_ValueError(MP_ERROR_TEXT("txbuf too large")); } } #endif // Initialise the UART peripheral if any arguments given, or it was not initialised previously. if (n_args > 0 || kw_args->used > 0 || self->new) { self->new = false; // Check the rx/tx pin assignments if (self->tx == 0xff || self->rx == 0xff || (self->tx / 4) != (self->rx / 4)) { mp_raise_ValueError(MP_ERROR_TEXT("Non-matching or missing rx/tx")); } self->rx_pad_config = get_sercom_config(self->rx, self->id); self->tx_pad_config = get_sercom_config(self->tx, self->id); // Make sure timeout_char is at least as long as a whole character (13 bits to be safe). uint32_t min_timeout_char = 13000 / self->baudrate + 1; if (self->timeout_char < min_timeout_char) { self->timeout_char = min_timeout_char; } // Allocate the RX/TX buffers. ringbuf_alloc(&(self->read_buffer), rxbuf_len + 1); #if MICROPY_HW_UART_TXBUF ringbuf_alloc(&(self->write_buffer), txbuf_len + 1); #endif // Step 1: Configure the Pin mux. mp_hal_set_pin_mux(self->rx, self->rx_pad_config.alt_fct); mp_hal_set_pin_mux(self->tx, self->tx_pad_config.alt_fct); // Next: Set up the clocks enable_sercom_clock(self->id); // Configure the sercom module machine_sercom_configure(self); } } static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // Get UART bus. int uart_id = mp_obj_get_int(args[0]); if (uart_id < 0 || uart_id > SERCOM_INST_NUM) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id); } // Create the UART object and fill it with defaults. machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type); self->id = uart_id; self->baudrate = DEFAULT_UART_BAUDRATE; self->bits = 8; self->stop = 0; self->timeout = 1; self->timeout_char = 1; self->tx = 0xff; self->rx = 0xff; #if MICROPY_HW_UART_RTSCTS self->rts = 0xff; self->cts = 0xff; #endif self->new = true; MP_STATE_PORT(sercom_table[uart_id]) = self; mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args); return MP_OBJ_FROM_PTR(self); } static void mp_machine_uart_deinit(machine_uart_obj_t *self) { // Check if it is the active object. if (MP_STATE_PORT(sercom_table)[self->id] == self) { Sercom *uart = sercom_instance[self->id]; // Disable interrupts and de-register the IRQ if (uart) { uart->USART.INTENCLR.reg = 0xff; sercom_register_irq(self->id, NULL); sercom_enable(uart, 0); } } } static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) { return ringbuf_avail(&self->read_buffer); } static bool mp_machine_uart_txdone(machine_uart_obj_t *self) { Sercom *uart = sercom_instance[self->id]; return uart->USART.INTFLAG.bit.DRE #if MICROPY_HW_UART_TXBUF && ringbuf_avail(&self->write_buffer) == 0 #endif && uart->USART.INTFLAG.bit.TXC; } static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) { uint32_t break_time_us = 13 * 1000000 / self->baudrate; // Wait for the tx buffer to drain. #if MICROPY_HW_UART_TXBUF while (ringbuf_avail(&self->write_buffer) > 0) { MICROPY_EVENT_POLL_HOOK } #endif // Wait for the TX queue & register to clear // Since the flags are not safe, just wait sufficiently long. mp_hal_delay_us(2 * break_time_us); // Disable MUX PORT->Group[self->tx / 32].PINCFG[self->tx % 32].bit.PMUXEN = 0; // Set TX pin to low for break time mp_hal_pin_low(self->tx); mp_hal_delay_us(break_time_us); mp_hal_pin_high(self->tx); // Enable Mux again mp_hal_set_pin_mux(self->tx, self->tx_pad_config.alt_fct); } static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); Sercom *uart = sercom_instance[self->id]; uint64_t t = mp_hal_ticks_ms_64() + self->timeout; uint64_t timeout_char = self->timeout_char; uint8_t *dest = buf_in; for (size_t i = 0; i < size; i++) { // Wait for the first/next character while (ringbuf_avail(&self->read_buffer) == 0) { if (mp_hal_ticks_ms_64() > t) { // timed out if (i <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } else { return i; } } MICROPY_EVENT_POLL_HOOK } *dest++ = ringbuf_get(&(self->read_buffer)); t = mp_hal_ticks_ms_64() + timeout_char; // (Re-)Enable RXC interrupt if ((uart->USART.INTENSET.reg & SERCOM_USART_INTENSET_RXC) == 0) { uart->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC; } } return size; } static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); size_t i = 0; const uint8_t *src = buf_in; Sercom *uart = sercom_instance[self->id]; #if MICROPY_HW_UART_TXBUF uint64_t t = mp_hal_ticks_ms_64() + self->timeout; while (i < size) { // Wait for the first/next character to be sent. while (ringbuf_free(&(self->write_buffer)) == 0) { if (mp_hal_ticks_ms_64() > t) { // timed out if (i <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } else { return i; } } MICROPY_EVENT_POLL_HOOK } ringbuf_put(&(self->write_buffer), *src++); i++; uart->USART.INTENSET.reg = SERCOM_USART_INTENSET_DRE; // kick off the IRQ } #else while (i < size) { while (!(uart->USART.INTFLAG.bit.DRE)) { } uart->USART.DATA.bit.DATA = *src++; i++; } #endif return size; } static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_uart_obj_t *self = self_in; mp_uint_t ret; Sercom *uart = sercom_instance[self->id]; if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && (uart->USART.INTFLAG.bit.RXC != 0 || ringbuf_avail(&self->read_buffer) > 0)) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && (uart->USART.INTFLAG.bit.DRE != 0 #if MICROPY_HW_UART_TXBUF || ringbuf_avail(&self->write_buffer) > 0 #endif )) { ret |= MP_STREAM_POLL_WR; } } else if (request == MP_STREAM_FLUSH) { // The timeout is defined by the buffer size and the baudrate. // Take the worst case assumptions at 13 bit symbol size times 2. uint64_t timeout = mp_hal_ticks_ms_64() + (3 #if MICROPY_HW_UART_TXBUF + self->write_buffer.size #endif ) * 13000 * 2 / self->baudrate; do { if (mp_machine_uart_txdone(self)) { return 0; } MICROPY_EVENT_POLL_HOOK } while (mp_hal_ticks_ms_64() < timeout); *errcode = MP_ETIMEDOUT; ret = MP_STREAM_ERROR; } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; }