/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Damien P. George * Copyright (c) 2022 "Robert Hammelrath" * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "shared/timeutils/timeutils.h" #include "py/mphal.h" #include "extmod/modmachine.h" #include "sam.h" typedef struct _machine_rtc_obj_t { mp_obj_base_t base; mp_obj_t callback; } machine_rtc_obj_t; // Singleton RTC object. static const machine_rtc_obj_t machine_rtc_obj = {{&machine_rtc_type}}; // Start the RTC Timer. void machine_rtc_start(bool force) { #if defined(MCU_SAMD21) if (RTC->MODE2.CTRL.bit.ENABLE == 0 || force) { // Enable the 1k Clock GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK8 | GCLK_CLKCTRL_ID_RTC; RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_SWRST; while (RTC->MODE2.STATUS.bit.SYNCBUSY) { } RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_MODE_CLOCK | RTC_MODE2_CTRL_PRESCALER_DIV1024 | RTC_MODE2_CTRL_ENABLE; while (RTC->MODE2.STATUS.bit.SYNCBUSY) { } } #elif defined(MCU_SAMD51) if (RTC->MODE2.CTRLA.bit.ENABLE == 0 || force) { RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_SWRST; while (RTC->MODE2.SYNCBUSY.bit.SWRST) { } RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_MODE_CLOCK | RTC_MODE2_CTRLA_CLOCKSYNC | RTC_MODE2_CTRLA_PRESCALER_DIV1024 | RTC_MODE2_CTRLA_ENABLE; while (RTC->MODE2.SYNCBUSY.bit.ENABLE) { } } #endif } // Get the time from the RTC and put it into a tm struct. void rtc_gettime(timeutils_struct_time_t *tm) { tm->tm_year = RTC->MODE2.CLOCK.bit.YEAR + 2000; tm->tm_mon = RTC->MODE2.CLOCK.bit.MONTH; tm->tm_mday = RTC->MODE2.CLOCK.bit.DAY; tm->tm_hour = RTC->MODE2.CLOCK.bit.HOUR; tm->tm_min = RTC->MODE2.CLOCK.bit.MINUTE; tm->tm_sec = RTC->MODE2.CLOCK.bit.SECOND; } static mp_obj_t machine_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // Check arguments. mp_arg_check_num(n_args, n_kw, 0, 0, false); // RTC was already started at boot time. So nothing to do here. // Return constant object. return (mp_obj_t)&machine_rtc_obj; } static mp_obj_t machine_rtc_datetime_helper(size_t n_args, const mp_obj_t *args) { // Rtc *rtc = RTC; if (n_args == 1) { // Get date and time. timeutils_struct_time_t tm; rtc_gettime(&tm); mp_obj_t tuple[8] = { mp_obj_new_int(tm.tm_year), mp_obj_new_int(tm.tm_mon), mp_obj_new_int(tm.tm_mday), mp_obj_new_int(timeutils_calc_weekday(tm.tm_year, tm.tm_mon, tm.tm_mday)), mp_obj_new_int(tm.tm_hour), mp_obj_new_int(tm.tm_min), mp_obj_new_int(tm.tm_sec), mp_obj_new_int(0), }; return mp_obj_new_tuple(8, tuple); } else { // Set date and time. mp_obj_t *items; mp_obj_get_array_fixed_n(args[1], 8, &items); uint32_t date = RTC_MODE2_CLOCK_YEAR(mp_obj_get_int(items[0]) % 100) | RTC_MODE2_CLOCK_MONTH(mp_obj_get_int(items[1])) | RTC_MODE2_CLOCK_DAY(mp_obj_get_int(items[2])) | RTC_MODE2_CLOCK_HOUR(mp_obj_get_int(items[4])) | RTC_MODE2_CLOCK_MINUTE(mp_obj_get_int(items[5])) | RTC_MODE2_CLOCK_SECOND(mp_obj_get_int(items[6])); RTC->MODE2.CLOCK.reg = date; #if defined(MCU_SAMD21) while (RTC->MODE2.STATUS.bit.SYNCBUSY) { } #elif defined(MCU_SAMD51) while (RTC->MODE2.SYNCBUSY.bit.CLOCKSYNC) { } #endif return mp_const_none; } } static mp_obj_t machine_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) { return machine_rtc_datetime_helper(n_args, args); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_rtc_datetime_obj, 1, 2, machine_rtc_datetime); static mp_obj_t machine_rtc_init(mp_obj_t self_in, mp_obj_t date) { mp_obj_t args[2] = {self_in, date}; machine_rtc_datetime_helper(2, args); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(machine_rtc_init_obj, machine_rtc_init); // calibration(cal) // When the argument is a number in the range [-16 to 15], set the calibration value. static mp_obj_t machine_rtc_calibration(mp_obj_t self_in, mp_obj_t cal_in) { int8_t cal = 0; // Make it negative for a "natural" behavior: // value > 0: faster, value < 0: slower cal = -mp_obj_get_int(cal_in); RTC->MODE2.FREQCORR.reg = (uint8_t)cal; return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(machine_rtc_calibration_obj, machine_rtc_calibration); static const mp_rom_map_elem_t machine_rtc_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_rtc_init_obj) }, { MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&machine_rtc_datetime_obj) }, { MP_ROM_QSTR(MP_QSTR_calibration), MP_ROM_PTR(&machine_rtc_calibration_obj) }, }; static MP_DEFINE_CONST_DICT(machine_rtc_locals_dict, machine_rtc_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( machine_rtc_type, MP_QSTR_RTC, MP_TYPE_FLAG_NONE, make_new, machine_rtc_make_new, locals_dict, &machine_rtc_locals_dict );