/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #if MICROPY_PY_MACHINE_I2C #include "py/mphal.h" #include "py/mperrno.h" #include "extmod/modmachine.h" #include "samd_soc.h" #include "pin_af.h" #include "clock_config.h" #define DEFAULT_I2C_FREQ (400000) #define RISETIME_NS (200) #define I2C_TIMEOUT (100) #define IS_BUS_BUSY (i2c->I2CM.STATUS.bit.BUSSTATE == 3) #define NACK_RECVD (i2c->I2CM.STATUS.bit.RXNACK == 1) #define IRQ_DATA_SENT (i2c->I2CM.INTFLAG.bit.MB == 1) #define IRQ_DATA_RECVD (i2c->I2CM.INTFLAG.bit.SB == 1) #define READ_MODE ((flags & MP_MACHINE_I2C_FLAG_READ) != 0) #define PREPARE_ACK i2c->I2CM.CTRLB.bit.ACKACT = 0 #define PREPARE_NACK i2c->I2CM.CTRLB.bit.ACKACT = 1 #define SET_STOP_STATE i2c_send_command(i2c, 0x03) enum state_t { state_done = 0, state_busy, state_buserr, state_nack }; typedef struct _machine_i2c_obj_t { mp_obj_base_t base; Sercom *instance; uint8_t id; uint8_t scl; uint8_t sda; uint8_t state; uint32_t freq; uint32_t timeout; size_t len; uint8_t *buf; } machine_i2c_obj_t; static void i2c_send_command(Sercom *i2c, uint8_t command) { i2c->I2CM.CTRLB.bit.CMD = command; while (i2c->I2CM.SYNCBUSY.bit.SYSOP) { } } void common_i2c_irq_handler(int i2c_id) { // handle Sercom I2C IRQ machine_i2c_obj_t *self = MP_STATE_PORT(sercom_table[i2c_id]); // Handle IRQ if (self != NULL) { Sercom *i2c = self->instance; // For now, clear all interrupts if (IRQ_DATA_RECVD) { if (self->len > 0) { *(self->buf)++ = i2c->I2CM.DATA.reg; self->len--; self->timeout = I2C_TIMEOUT; } if (self->len > 0) { // no ACK at the last byte PREPARE_ACK; // Send ACK i2c_send_command(i2c, 0x02); } else { PREPARE_NACK; // Send NACK after the last byte self->state = state_done; i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_SB; } } else if (IRQ_DATA_SENT) { if (NACK_RECVD) { // e.g. NACK after address for both read and write. self->state = state_nack; // force stop of transmission i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_MB; } else if (self->len > 0) { // data to be sent i2c->I2CM.DATA.bit.DATA = *(self->buf)++; self->len--; self->timeout = I2C_TIMEOUT; } else { // No data left, if there was any. self->state = state_done; i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_MB; } } else { // On any error, e.g. ARBLOST or BUSERROR, stop the transmission self->len = 0; self->state = state_buserr; i2c->I2CM.INTFLAG.reg |= SERCOM_I2CM_INTFLAG_ERROR; } } } static void machine_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "I2C(%u, freq=%u, scl=%u, sda=%u)", self->id, self->freq, self->scl, self->sda); } mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_freq, ARG_scl, ARG_sda }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_freq, MP_ARG_INT, {.u_int = DEFAULT_I2C_FREQ} }, { MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Get I2C bus. int id = mp_obj_get_int(args[ARG_id].u_obj); if (id < 0 || id >= SERCOM_INST_NUM) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("I2C(%d) doesn't exist"), id); } // Get the peripheral object. machine_i2c_obj_t *self = mp_obj_malloc(machine_i2c_obj_t, &machine_i2c_type); self->id = id; self->instance = sercom_instance[self->id]; // Set SCL/SDA pins. sercom_pad_config_t scl_pad_config; self->scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj); scl_pad_config = get_sercom_config(self->scl, self->id); sercom_pad_config_t sda_pad_config; self->sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj); sda_pad_config = get_sercom_config(self->sda, self->id); if (sda_pad_config.pad_nr != 0 || scl_pad_config.pad_nr != 1) { mp_raise_ValueError(MP_ERROR_TEXT("invalid pin for sda or scl")); } MP_STATE_PORT(sercom_table[self->id]) = self; self->freq = args[ARG_freq].u_int; // Configure the Pin mux. mp_hal_set_pin_mux(self->scl, scl_pad_config.alt_fct); mp_hal_set_pin_mux(self->sda, sda_pad_config.alt_fct); // Set up the clocks enable_sercom_clock(self->id); // Initialise the I2C peripheral Sercom *i2c = self->instance; // Reset the device i2c->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SWRST; while (i2c->I2CM.SYNCBUSY.bit.SWRST == 1) { } // Set to master mode, inactivity timeout of 20 SCL cycles and speed. i2c->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_MODE(0x05) | SERCOM_I2CM_CTRLA_INACTOUT(3) | SERCOM_I2CM_CTRLA_SPEED(self->freq > 400000 ? 1 : 0); // I2C is driven by the clock of GCLK Generator 2, with it's freq in variable bus_freq // baud = peripheral_freq / (2 * baudrate) - 5 - (rise_time * peripheral_freq) / 2 // Just set the minimal configuration for standard and fast mode. // Set Baud. Assume ~300ns rise time. Maybe set later by a keyword argument. int32_t baud = get_peripheral_freq() / (2 * self->freq) - 5 - (get_peripheral_freq() / 1000000) * RISETIME_NS / 2000; if (baud < 0) { baud = 0; } if (baud > 255) { baud = 255; } i2c->I2CM.BAUD.reg = baud; // Enable interrupts sercom_register_irq(self->id, &common_i2c_irq_handler); #if defined(MCU_SAMD21) NVIC_EnableIRQ(SERCOM0_IRQn + self->id); #elif defined(MCU_SAMD51) NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id); // MB interrupt NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 1); // SB interrupt NVIC_EnableIRQ(SERCOM0_0_IRQn + 4 * self->id + 3); // ERROR interrupt #endif // Now enable I2C. sercom_enable(i2c, 1); // Force the bus state to idle i2c->I2CM.STATUS.bit.BUSSTATE = 1; return MP_OBJ_FROM_PTR(self); } static int machine_i2c_transfer_single(mp_obj_base_t *self_in, uint16_t addr, size_t len, uint8_t *buf, unsigned int flags) { machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in; Sercom *i2c = self->instance; self->timeout = I2C_TIMEOUT; self->len = len; self->buf = buf; // Wait a while if the bus is busy while (IS_BUS_BUSY && self->timeout) { MICROPY_EVENT_POLL_HOOK if (--self->timeout == 0) { return -MP_ETIMEDOUT; } } // Enable interrupts and set the state i2c->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB | SERCOM_I2CM_INTENSET_ERROR; self->state = state_busy; // Send the address, which kicks off the transfer i2c->I2CM.ADDR.bit.ADDR = (addr << 1) | READ_MODE; // Transfer the data self->timeout = I2C_TIMEOUT; while (self->state == state_busy && self->timeout) { self->timeout--; MICROPY_EVENT_POLL_HOOK } i2c->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB | SERCOM_I2CM_INTENSET_ERROR; // Check the error states after the transfer is stopped if (self->state == state_nack) { SET_STOP_STATE; return self->len == len ? -MP_ENODEV : -MP_EIO; } else if (self->state == state_buserr) { SET_STOP_STATE; return -MP_EIO; } else if (self->timeout == 0) { SET_STOP_STATE; return -MP_ETIMEDOUT; } if (flags & MP_MACHINE_I2C_FLAG_STOP) { SET_STOP_STATE; } return len; } static const mp_machine_i2c_p_t machine_i2c_p = { .transfer = mp_machine_i2c_transfer_adaptor, .transfer_single = machine_i2c_transfer_single, }; MP_DEFINE_CONST_OBJ_TYPE( machine_i2c_type, MP_QSTR_I2C, MP_TYPE_FLAG_NONE, make_new, machine_i2c_make_new, print, machine_i2c_print, protocol, &machine_i2c_p, locals_dict, &mp_machine_i2c_locals_dict ); #endif