/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/binary.h" #include "py/runtime.h" #include "py/mperrno.h" #include "py/mphal.h" #include "shared/runtime/mpirq.h" #include "modrp2.h" #include "hardware/clocks.h" #include "hardware/irq.h" #include "hardware/pio.h" #define PIO_NUM(pio) ((pio) == pio0 ? 0 : 1) typedef struct _rp2_pio_obj_t { mp_obj_base_t base; PIO pio; uint8_t irq; } rp2_pio_obj_t; typedef struct _rp2_pio_irq_obj_t { mp_irq_obj_t base; uint32_t flags; uint32_t trigger; } rp2_pio_irq_obj_t; typedef struct _rp2_state_machine_obj_t { mp_obj_base_t base; PIO pio; uint8_t irq; uint8_t sm; // 0-3 uint8_t id; // 0-7 } rp2_state_machine_obj_t; typedef struct _rp2_state_machine_irq_obj_t { mp_irq_obj_t base; uint8_t flags; uint8_t trigger; } rp2_state_machine_irq_obj_t; static const rp2_state_machine_obj_t rp2_state_machine_obj[8]; static uint8_t rp2_state_machine_initial_pc[8]; // These masks keep track of PIO instruction memory used by this module. static uint32_t rp2_pio_instruction_memory_usage_mask[2]; static const rp2_state_machine_obj_t *rp2_state_machine_get_object(mp_int_t sm_id); static void rp2_state_machine_reset_all(void); static mp_obj_t rp2_state_machine_init_helper(const rp2_state_machine_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args); static void pio_irq0(PIO pio) { uint32_t ints = pio->ints0; // Acknowledge SM0-3 IRQs if they are enabled on this IRQ0. pio->irq = ints >> 8; // Call handler if it is registered, for PIO irqs. rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(pio)]); if (irq != NULL && (ints & irq->trigger)) { irq->flags = ints & irq->trigger; mp_irq_handler(&irq->base); } // Call handler if it is registered, for StateMachine irqs. for (size_t i = 0; i < 4; ++i) { rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[PIO_NUM(pio) * 4 + i]); if (irq != NULL && ((ints >> (8 + i)) & irq->trigger)) { irq->flags = 1; mp_irq_handler(&irq->base); } } } static void pio0_irq0(void) { pio_irq0(pio0); } static void pio1_irq0(void) { pio_irq0(pio1); } // Calls pio_add_program() and keeps track of used instruction memory. static uint rp2_pio_add_managed_program(PIO pio, struct pio_program *pio_program) { uint offset = pio_add_program(pio, pio_program); uint32_t mask = ((1 << pio_program->length) - 1) << offset; rp2_pio_instruction_memory_usage_mask[pio_get_index(pio)] |= mask; return offset; } // Calls pio_remove_program() and keeps track of used instruction memory. static void rp2_pio_remove_managed_program(PIO pio, struct pio_program *pio_program, uint offset) { pio_remove_program(pio, pio_program, offset); uint32_t mask = ((1 << pio_program->length) - 1) << offset; rp2_pio_instruction_memory_usage_mask[pio_get_index(pio)] &= ~mask; } // Calls pio_remove_program() for all programs registered with rp2_pio_add_managed_program(), // that weren't already removed via rp2_pio_remove_managed_program(). static void rp2_pio_remove_all_managed_programs(PIO pio) { uint32_t mask = rp2_pio_instruction_memory_usage_mask[pio_get_index(pio)]; for (size_t i = 0; i < 32; ++i) { if (mask & (1 << i)) { size_t j; for (j = i + 1; j < 32; ++j) { if (!(mask & (1 << j))) { break; } } struct pio_program pio_program = { NULL, j - i, -1 }; pio_remove_program(pio, &pio_program, i); i = j; // i indexes an unused bit, or is 32 } } rp2_pio_instruction_memory_usage_mask[pio_get_index(pio)] = 0; } void rp2_pio_init(void) { // Set up interrupts. memset(MP_STATE_PORT(rp2_pio_irq_obj), 0, sizeof(MP_STATE_PORT(rp2_pio_irq_obj))); memset(MP_STATE_PORT(rp2_state_machine_irq_obj), 0, sizeof(MP_STATE_PORT(rp2_state_machine_irq_obj))); irq_set_exclusive_handler(PIO0_IRQ_0, pio0_irq0); irq_set_exclusive_handler(PIO1_IRQ_0, pio1_irq0); } void rp2_pio_deinit(void) { // Disable and clear interrupts. irq_set_mask_enabled((1u << PIO0_IRQ_0) | (1u << PIO0_IRQ_1), false); irq_remove_handler(PIO0_IRQ_0, pio0_irq0); irq_remove_handler(PIO1_IRQ_0, pio1_irq0); rp2_state_machine_reset_all(); // Reset all PIO instruction memory allocated by this module. // Note: other subsystems (eg the CYW43 driver) may use the PIO, // and their PIO programs should remain intact. rp2_pio_remove_all_managed_programs(pio0); rp2_pio_remove_all_managed_programs(pio1); } /******************************************************************************/ // Helper functions to manage asm_pio data structure. #define ASM_PIO_CONFIG_DEFAULT { -1, 0, 0, 0 }; enum { PROG_DATA, PROG_OFFSET_PIO0, PROG_OFFSET_PIO1, PROG_EXECCTRL, PROG_SHIFTCTRL, PROG_OUT_PINS, PROG_SET_PINS, PROG_SIDESET_PINS, PROG_MAX_FIELDS, }; typedef struct _asm_pio_config_t { int8_t base; uint8_t count; uint32_t pindirs; uint32_t pinvals; } asm_pio_config_t; static void asm_pio_override_shiftctrl(mp_obj_t arg, uint32_t bits, uint32_t lsb, pio_sm_config *config) { if (arg != mp_const_none) { config->shiftctrl = (config->shiftctrl & ~bits) | (mp_obj_get_int(arg) << lsb); } } static void asm_pio_get_pins(const char *type, mp_obj_t prog_pins, mp_obj_t arg_base, asm_pio_config_t *config) { if (prog_pins != mp_const_none) { // The PIO program specified pins for initialisation on out/set/sideset. if (mp_obj_is_integer(prog_pins)) { // A single pin specified, set its dir and value. config->count = 1; mp_int_t value = mp_obj_get_int(prog_pins); config->pindirs = value >> 1; config->pinvals = value & 1; } else { // An array of pins specified, set their dirs and values. size_t count; mp_obj_t *items; mp_obj_get_array(prog_pins, &count, &items); config->count = count; for (size_t i = 0; i < config->count; ++i) { mp_int_t value = mp_obj_get_int(items[i]); config->pindirs |= (value >> 1) << i; config->pinvals |= (value & 1) << i; } } } if (arg_base != mp_const_none) { // The instantiation of the PIO program specified a base pin. config->base = mp_hal_get_pin_obj(arg_base); } } static void asm_pio_init_gpio(PIO pio, uint32_t sm, asm_pio_config_t *config) { uint32_t pinmask = ((1 << config->count) - 1) << config->base; pio_sm_set_pins_with_mask(pio, sm, config->pinvals << config->base, pinmask); pio_sm_set_pindirs_with_mask(pio, sm, config->pindirs << config->base, pinmask); for (size_t i = 0; i < config->count; ++i) { gpio_set_function(config->base + i, pio == pio0 ? GPIO_FUNC_PIO0 : GPIO_FUNC_PIO1); } } /******************************************************************************/ // PIO object static const mp_irq_methods_t rp2_pio_irq_methods; static rp2_pio_obj_t rp2_pio_obj[] = { { { &rp2_pio_type }, pio0, PIO0_IRQ_0 }, { { &rp2_pio_type }, pio1, PIO1_IRQ_0 }, }; static void rp2_pio_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "PIO(%u)", self->pio == pio0 ? 0 : 1); } // constructor(id) static mp_obj_t rp2_pio_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 1, false); // Get the PIO object. int pio_id = mp_obj_get_int(args[0]); if (!(0 <= pio_id && pio_id < MP_ARRAY_SIZE(rp2_pio_obj))) { mp_raise_ValueError("invalid PIO"); } const rp2_pio_obj_t *self = &rp2_pio_obj[pio_id]; // Return the PIO object. return MP_OBJ_FROM_PTR(self); } // PIO.add_program(prog) static mp_obj_t rp2_pio_add_program(mp_obj_t self_in, mp_obj_t prog_in) { rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in); // Get the program data. mp_obj_t *prog; mp_obj_get_array_fixed_n(prog_in, PROG_MAX_FIELDS, &prog); mp_buffer_info_t bufinfo; mp_get_buffer_raise(prog[PROG_DATA], &bufinfo, MP_BUFFER_READ); // Add the program data to the PIO instruction memory. struct pio_program pio_program = { bufinfo.buf, bufinfo.len / 2, -1 }; if (!pio_can_add_program(self->pio, &pio_program)) { mp_raise_OSError(MP_ENOMEM); } uint offset = rp2_pio_add_managed_program(self->pio, &pio_program); // Store the program offset in the program object. prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)] = MP_OBJ_NEW_SMALL_INT(offset); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(rp2_pio_add_program_obj, rp2_pio_add_program); // PIO.remove_program([prog]) static mp_obj_t rp2_pio_remove_program(size_t n_args, const mp_obj_t *args) { rp2_pio_obj_t *self = MP_OBJ_TO_PTR(args[0]); // Default to remove all programs. uint8_t length = 32; uint offset = 0; if (n_args > 1) { // Get specific program to remove. mp_obj_t *prog; mp_obj_get_array_fixed_n(args[1], PROG_MAX_FIELDS, &prog); mp_buffer_info_t bufinfo; mp_get_buffer_raise(prog[PROG_DATA], &bufinfo, MP_BUFFER_READ); length = bufinfo.len / 2; offset = mp_obj_get_int(prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)]); if (offset < 0) { mp_raise_ValueError("prog not in instruction memory"); } // Invalidate the program offset in the program object. prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)] = MP_OBJ_NEW_SMALL_INT(-1); } // Remove the program from the instruction memory. struct pio_program pio_program = { NULL, length, -1 }; rp2_pio_remove_managed_program(self->pio, &pio_program, offset); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_pio_remove_program_obj, 1, 2, rp2_pio_remove_program); // PIO.state_machine(id, prog, freq=-1, *, set=None) static mp_obj_t rp2_pio_state_machine(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { rp2_pio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); // Get and verify the state machine id. mp_int_t sm_id = mp_obj_get_int(pos_args[1]); if (!(0 <= sm_id && sm_id < 4)) { mp_raise_ValueError("invalid StateMachine"); } // Return the correct StateMachine object. const rp2_state_machine_obj_t *sm = rp2_state_machine_get_object((self->pio == pio0 ? 0 : 4) + sm_id); if (n_args > 2 || kw_args->used > 0) { // Configuration arguments given so init this StateMachine. rp2_state_machine_init_helper(sm, n_args - 2, pos_args + 2, kw_args); } return MP_OBJ_FROM_PTR(sm); } MP_DEFINE_CONST_FUN_OBJ_KW(rp2_pio_state_machine_obj, 2, rp2_pio_state_machine); // PIO.irq(handler=None, trigger=IRQ_SM0|IRQ_SM1|IRQ_SM2|IRQ_SM3, hard=False) static mp_obj_t rp2_pio_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_handler, ARG_trigger, ARG_hard }; static const mp_arg_t allowed_args[] = { { MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_trigger, MP_ARG_INT, {.u_int = 0xf00} }, { MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} }, }; // Parse the arguments. rp2_pio_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Get the IRQ object. rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]); // Allocate the IRQ object if it doesn't already exist. if (irq == NULL) { irq = m_new_obj(rp2_pio_irq_obj_t); irq->base.base.type = &mp_irq_type; irq->base.methods = (mp_irq_methods_t *)&rp2_pio_irq_methods; irq->base.parent = MP_OBJ_FROM_PTR(self); irq->base.handler = mp_const_none; irq->base.ishard = false; MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]) = irq; } if (n_args > 1 || kw_args->used != 0) { // Configure IRQ. // Disable all IRQs while data is updated. irq_set_enabled(self->irq, false); // Update IRQ data. irq->base.handler = args[ARG_handler].u_obj; irq->base.ishard = args[ARG_hard].u_bool; irq->flags = 0; irq->trigger = args[ARG_trigger].u_int; // Enable IRQ if a handler is given. if (args[ARG_handler].u_obj != mp_const_none) { self->pio->inte0 = irq->trigger; irq_set_enabled(self->irq, true); } } return MP_OBJ_FROM_PTR(irq); } static MP_DEFINE_CONST_FUN_OBJ_KW(rp2_pio_irq_obj, 1, rp2_pio_irq); static const mp_rom_map_elem_t rp2_pio_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_add_program), MP_ROM_PTR(&rp2_pio_add_program_obj) }, { MP_ROM_QSTR(MP_QSTR_remove_program), MP_ROM_PTR(&rp2_pio_remove_program_obj) }, { MP_ROM_QSTR(MP_QSTR_state_machine), MP_ROM_PTR(&rp2_pio_state_machine_obj) }, { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&rp2_pio_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_IN_LOW), MP_ROM_INT(0) }, { MP_ROM_QSTR(MP_QSTR_IN_HIGH), MP_ROM_INT(1) }, { MP_ROM_QSTR(MP_QSTR_OUT_LOW), MP_ROM_INT(2) }, { MP_ROM_QSTR(MP_QSTR_OUT_HIGH), MP_ROM_INT(3) }, { MP_ROM_QSTR(MP_QSTR_SHIFT_LEFT), MP_ROM_INT(0) }, { MP_ROM_QSTR(MP_QSTR_SHIFT_RIGHT), MP_ROM_INT(1) }, { MP_ROM_QSTR(MP_QSTR_JOIN_NONE), MP_ROM_INT(0) }, { MP_ROM_QSTR(MP_QSTR_JOIN_TX), MP_ROM_INT(1) }, { MP_ROM_QSTR(MP_QSTR_JOIN_RX), MP_ROM_INT(2) }, { MP_ROM_QSTR(MP_QSTR_IRQ_SM0), MP_ROM_INT(0x100) }, { MP_ROM_QSTR(MP_QSTR_IRQ_SM1), MP_ROM_INT(0x200) }, { MP_ROM_QSTR(MP_QSTR_IRQ_SM2), MP_ROM_INT(0x400) }, { MP_ROM_QSTR(MP_QSTR_IRQ_SM3), MP_ROM_INT(0x800) }, }; static MP_DEFINE_CONST_DICT(rp2_pio_locals_dict, rp2_pio_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( rp2_pio_type, MP_QSTR_PIO, MP_TYPE_FLAG_NONE, make_new, rp2_pio_make_new, print, rp2_pio_print, locals_dict, &rp2_pio_locals_dict ); static mp_uint_t rp2_pio_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) { rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in); rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]); irq_set_enabled(self->irq, false); irq->flags = 0; irq->trigger = new_trigger; irq_set_enabled(self->irq, true); return 0; } static mp_uint_t rp2_pio_irq_info(mp_obj_t self_in, mp_uint_t info_type) { rp2_pio_obj_t *self = MP_OBJ_TO_PTR(self_in); rp2_pio_irq_obj_t *irq = MP_STATE_PORT(rp2_pio_irq_obj[PIO_NUM(self->pio)]); if (info_type == MP_IRQ_INFO_FLAGS) { return irq->flags; } else if (info_type == MP_IRQ_INFO_TRIGGERS) { return irq->trigger; } return 0; } static const mp_irq_methods_t rp2_pio_irq_methods = { .trigger = rp2_pio_irq_trigger, .info = rp2_pio_irq_info, }; /******************************************************************************/ // StateMachine object // This mask keeps track of state machines claimed by this module. static uint32_t rp2_state_machine_claimed_mask; static const mp_irq_methods_t rp2_state_machine_irq_methods; static const rp2_state_machine_obj_t rp2_state_machine_obj[] = { { { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 0, 0 }, { { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 1, 1 }, { { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 2, 2 }, { { &rp2_state_machine_type }, pio0, PIO0_IRQ_0, 3, 3 }, { { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 0, 4 }, { { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 1, 5 }, { { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 2, 6 }, { { &rp2_state_machine_type }, pio1, PIO1_IRQ_0, 3, 7 }, }; static const rp2_state_machine_obj_t *rp2_state_machine_get_object(mp_int_t sm_id) { if (!(0 <= sm_id && sm_id < MP_ARRAY_SIZE(rp2_state_machine_obj))) { mp_raise_ValueError("invalid StateMachine"); } const rp2_state_machine_obj_t *sm_obj = &rp2_state_machine_obj[sm_id]; if (!(rp2_state_machine_claimed_mask & (1 << sm_id))) { if (pio_sm_is_claimed(sm_obj->pio, sm_obj->sm)) { mp_raise_ValueError("StateMachine claimed by external resource"); } pio_sm_claim(sm_obj->pio, sm_obj->sm); rp2_state_machine_claimed_mask |= 1 << sm_id; } return sm_obj; } static void rp2_state_machine_reset_all(void) { for (size_t i = 0; i < MP_ARRAY_SIZE(rp2_state_machine_obj); ++i) { if (rp2_state_machine_claimed_mask & (1 << i)) { const rp2_state_machine_obj_t *sm_obj = &rp2_state_machine_obj[i]; pio_sm_unclaim(sm_obj->pio, sm_obj->sm); pio_sm_set_enabled(sm_obj->pio, sm_obj->sm, false); } } rp2_state_machine_claimed_mask = 0; } static void rp2_state_machine_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "StateMachine(%u)", self->id); } // StateMachine.init(prog, freq=-1, *, // in_base=None, out_base=None, set_base=None, jmp_pin=None, // sideset_base=None, in_shiftdir=None, out_shiftdir=None, // push_thresh=None, pull_thresh=None, // ) static mp_obj_t rp2_state_machine_init_helper(const rp2_state_machine_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_prog, ARG_freq, ARG_in_base, ARG_out_base, ARG_set_base, ARG_jmp_pin, ARG_sideset_base, ARG_in_shiftdir, ARG_out_shiftdir, ARG_push_thresh, ARG_pull_thresh }; static const mp_arg_t allowed_args[] = { { MP_QSTR_prog, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_in_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_out_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_set_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_jmp_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_sideset_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_in_shiftdir, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_out_shiftdir, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_push_thresh, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_pull_thresh, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; // Parse the arguments. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Get the program. mp_obj_t *prog; mp_obj_get_array_fixed_n(args[ARG_prog].u_obj, PROG_MAX_FIELDS, &prog); // Get and the program offset, and load it into memory if it's not already there. mp_int_t offset = mp_obj_get_int(prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)]); if (offset < 0) { rp2_pio_add_program(&rp2_pio_obj[PIO_NUM(self->pio)], args[ARG_prog].u_obj); offset = mp_obj_get_int(prog[PROG_OFFSET_PIO0 + PIO_NUM(self->pio)]); } rp2_state_machine_initial_pc[self->id] = offset; // Compute the clock divider. uint16_t clkdiv_int; uint8_t clkdiv_frac; if (args[ARG_freq].u_int < 0) { // Default: run at CPU frequency. clkdiv_int = 1; clkdiv_frac = 0; } else if (args[ARG_freq].u_int == 0) { // Special case of 0: set clkdiv to 0. clkdiv_int = 0; clkdiv_frac = 0; } else { // Frequency given in Hz, compute clkdiv from it. uint64_t div = (uint64_t)clock_get_hz(clk_sys) * 256ULL / (uint64_t)args[ARG_freq].u_int; if (!(div >= 1 * 256 && div <= 65536 * 256)) { mp_raise_ValueError(MP_ERROR_TEXT("freq out of range")); } clkdiv_int = div / 256; clkdiv_frac = div & 0xff; } // Disable and reset the state machine. pio_sm_init(self->pio, self->sm, offset, NULL); // Build the state machine config. pio_sm_config config = pio_get_default_sm_config(); sm_config_set_clkdiv_int_frac(&config, clkdiv_int, clkdiv_frac); config.execctrl = mp_obj_get_int_truncated(prog[PROG_EXECCTRL]); config.shiftctrl = mp_obj_get_int_truncated(prog[PROG_SHIFTCTRL]); // Adjust wrap top/bottom to account for location of program in instruction memory. config.execctrl += (offset << PIO_SM0_EXECCTRL_WRAP_TOP_LSB) + (offset << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB); // Configure in pin base, if needed. if (args[ARG_in_base].u_obj != mp_const_none) { sm_config_set_in_pins(&config, mp_hal_get_pin_obj(args[ARG_in_base].u_obj)); } // Configure out pins, if needed. asm_pio_config_t out_config = ASM_PIO_CONFIG_DEFAULT; asm_pio_get_pins("out", prog[PROG_OUT_PINS], args[ARG_out_base].u_obj, &out_config); if (out_config.base >= 0) { sm_config_set_out_pins(&config, out_config.base, out_config.count); } // Configure set pin, if needed. asm_pio_config_t set_config = ASM_PIO_CONFIG_DEFAULT; asm_pio_get_pins("set", prog[PROG_SET_PINS], args[ARG_set_base].u_obj, &set_config); if (set_config.base >= 0) { sm_config_set_set_pins(&config, set_config.base, set_config.count); } // Configure jmp pin, if needed. if (args[ARG_jmp_pin].u_obj != mp_const_none) { sm_config_set_jmp_pin(&config, mp_hal_get_pin_obj(args[ARG_jmp_pin].u_obj)); } // Configure sideset pin, if needed. asm_pio_config_t sideset_config = ASM_PIO_CONFIG_DEFAULT; asm_pio_get_pins("sideset", prog[PROG_SIDESET_PINS], args[ARG_sideset_base].u_obj, &sideset_config); if (sideset_config.base >= 0) { uint32_t count = sideset_config.count; if (config.execctrl & (1 << PIO_SM0_EXECCTRL_SIDE_EN_LSB)) { // When sideset is optional, count includes the option bit. ++count; } config.pinctrl |= count << PIO_SM0_PINCTRL_SIDESET_COUNT_LSB; sm_config_set_sideset_pins(&config, sideset_config.base); } // Override shift state if needed. asm_pio_override_shiftctrl(args[ARG_in_shiftdir].u_obj, PIO_SM0_SHIFTCTRL_IN_SHIFTDIR_BITS, PIO_SM0_SHIFTCTRL_IN_SHIFTDIR_LSB, &config); asm_pio_override_shiftctrl(args[ARG_out_shiftdir].u_obj, PIO_SM0_SHIFTCTRL_OUT_SHIFTDIR_BITS, PIO_SM0_SHIFTCTRL_OUT_SHIFTDIR_LSB, &config); asm_pio_override_shiftctrl(args[ARG_push_thresh].u_obj, PIO_SM0_SHIFTCTRL_PUSH_THRESH_BITS, PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB, &config); asm_pio_override_shiftctrl(args[ARG_pull_thresh].u_obj, PIO_SM0_SHIFTCTRL_PULL_THRESH_BITS, PIO_SM0_SHIFTCTRL_PULL_THRESH_LSB, &config); // Configure the state machine. pio_sm_set_config(self->pio, self->sm, &config); // Configure the GPIO. if (out_config.base >= 0) { asm_pio_init_gpio(self->pio, self->sm, &out_config); } if (set_config.base >= 0) { asm_pio_init_gpio(self->pio, self->sm, &set_config); } if (sideset_config.base >= 0) { asm_pio_init_gpio(self->pio, self->sm, &sideset_config); } return mp_const_none; } // StateMachine(id, ...) static mp_obj_t rp2_state_machine_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // Get the StateMachine object. mp_int_t sm_id = mp_obj_get_int(args[0]); const rp2_state_machine_obj_t *self = rp2_state_machine_get_object(sm_id); if (n_args > 1 || n_kw > 0) { // Configuration arguments given so init this StateMachine. mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); rp2_state_machine_init_helper(self, n_args - 1, args + 1, &kw_args); } // Return the StateMachine object. return MP_OBJ_FROM_PTR(self); } static mp_obj_t rp2_state_machine_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return rp2_state_machine_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } static MP_DEFINE_CONST_FUN_OBJ_KW(rp2_state_machine_init_obj, 1, rp2_state_machine_init); // StateMachine.active([value]) static mp_obj_t rp2_state_machine_active(size_t n_args, const mp_obj_t *args) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args > 1) { pio_sm_set_enabled(self->pio, self->sm, mp_obj_is_true(args[1])); } return mp_obj_new_bool((self->pio->ctrl >> self->sm) & 1); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_state_machine_active_obj, 1, 2, rp2_state_machine_active); // StateMachine.restart() static mp_obj_t rp2_state_machine_restart(mp_obj_t self_in) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in); pio_sm_restart(self->pio, self->sm); pio_sm_exec(self->pio, self->sm, pio_encode_jmp(rp2_state_machine_initial_pc[self->id])); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(rp2_state_machine_restart_obj, rp2_state_machine_restart); // StateMachine.exec(instr) static mp_obj_t rp2_state_machine_exec(mp_obj_t self_in, mp_obj_t instr_in) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_int_t encoded = 0; if (!mp_obj_get_int_maybe(instr_in, &encoded)) { mp_obj_t rp2_module = mp_import_name(MP_QSTR_rp2, mp_const_none, MP_OBJ_NEW_SMALL_INT(0)); mp_obj_t asm_pio_encode = mp_load_attr(rp2_module, MP_QSTR_asm_pio_encode); uint32_t sideset_count = self->pio->sm[self->sm].pinctrl >> PIO_SM0_PINCTRL_SIDESET_COUNT_LSB; uint8_t sideset_opt = !!(self->pio->sm[self->sm].execctrl & (1 << PIO_SM0_EXECCTRL_SIDE_EN_LSB)); mp_obj_t args[3]; args[0] = instr_in; args[1] = MP_OBJ_NEW_SMALL_INT(sideset_count); args[2] = MP_OBJ_NEW_SMALL_INT(sideset_opt); mp_obj_t encoded_obj = mp_call_function_n_kw(asm_pio_encode, 3, 0, args); encoded = mp_obj_get_int(encoded_obj); } pio_sm_exec(self->pio, self->sm, encoded); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(rp2_state_machine_exec_obj, rp2_state_machine_exec); // StateMachine.get(buf=None, shift=0) static mp_obj_t rp2_state_machine_get(size_t n_args, const mp_obj_t *args) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(args[0]); mp_buffer_info_t bufinfo; bufinfo.buf = NULL; uint32_t shift = 0; if (n_args > 1) { if (args[1] != mp_const_none) { mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE); if (bufinfo.typecode == BYTEARRAY_TYPECODE) { bufinfo.typecode = 'b'; } else { bufinfo.typecode |= 0x20; // make lowercase to support upper and lower } if (bufinfo.len == 0) { // edge case: buffer of zero length supplied return args[1]; } } if (n_args > 2) { shift = mp_obj_get_int(args[2]); } } uint8_t *dest = bufinfo.buf; const uint8_t *dest_top = dest + bufinfo.len; for (;;) { while (pio_sm_is_rx_fifo_empty(self->pio, self->sm)) { // This delay must be fast. mp_event_handle_nowait(); } uint32_t value = pio_sm_get(self->pio, self->sm) >> shift; if (dest == NULL) { return mp_obj_new_int_from_uint(value); } if (bufinfo.typecode == 'b') { *(uint8_t *)dest = value; dest += sizeof(uint8_t); } else if (bufinfo.typecode == 'h') { *(uint16_t *)dest = value; dest += sizeof(uint16_t); } else if (bufinfo.typecode == 'i') { *(uint32_t *)dest = value; dest += sizeof(uint32_t); } else { mp_raise_ValueError("unsupported buffer type"); } if (dest >= dest_top) { return args[1]; } } } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_state_machine_get_obj, 1, 3, rp2_state_machine_get); // StateMachine.put(value, shift=0) static mp_obj_t rp2_state_machine_put(size_t n_args, const mp_obj_t *args) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t shift = 0; if (n_args > 2) { shift = mp_obj_get_int(args[2]); } uint32_t data; mp_buffer_info_t bufinfo; if (!mp_get_buffer(args[1], &bufinfo, MP_BUFFER_READ)) { data = mp_obj_get_int_truncated(args[1]); bufinfo.buf = &data; bufinfo.len = sizeof(uint32_t); bufinfo.typecode = 'I'; } const uint8_t *src = bufinfo.buf; const uint8_t *src_top = src + bufinfo.len; while (src < src_top) { uint32_t value; if (bufinfo.typecode == 'B' || bufinfo.typecode == BYTEARRAY_TYPECODE) { value = *(uint8_t *)src; src += sizeof(uint8_t); } else if (bufinfo.typecode == 'H') { value = *(uint16_t *)src; src += sizeof(uint16_t); } else if (bufinfo.typecode == 'I') { value = *(uint32_t *)src; src += sizeof(uint32_t); } else { mp_raise_ValueError("unsupported buffer type"); } while (pio_sm_is_tx_fifo_full(self->pio, self->sm)) { // This delay must be fast. mp_event_handle_nowait(); } pio_sm_put(self->pio, self->sm, value << shift); } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_state_machine_put_obj, 2, 3, rp2_state_machine_put); // StateMachine.rx_fifo() static mp_obj_t rp2_state_machine_rx_fifo(mp_obj_t self_in) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(pio_sm_get_rx_fifo_level(self->pio, self->sm)); } static MP_DEFINE_CONST_FUN_OBJ_1(rp2_state_machine_rx_fifo_obj, rp2_state_machine_rx_fifo); // StateMachine.tx_fifo() static mp_obj_t rp2_state_machine_tx_fifo(mp_obj_t self_in) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(pio_sm_get_tx_fifo_level(self->pio, self->sm)); } static MP_DEFINE_CONST_FUN_OBJ_1(rp2_state_machine_tx_fifo_obj, rp2_state_machine_tx_fifo); // Buffer protocol implementation for StateMachine. // The buffer represents one of the FIFO ports of the state machine. Note that a different // pointer is returned depending on if this is for reading or writing. static mp_int_t rp2_state_machine_get_buffer(mp_obj_t o_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(o_in); bufinfo->len = 4; bufinfo->typecode = 'I'; if (flags & MP_BUFFER_WRITE) { bufinfo->buf = (void *)&self->pio->txf[self->sm]; } else { bufinfo->buf = (void *)&self->pio->rxf[self->sm]; } return 0; } // StateMachine.irq(handler=None, trigger=0|1, hard=False) static mp_obj_t rp2_state_machine_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_handler, ARG_trigger, ARG_hard }; static const mp_arg_t allowed_args[] = { { MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_trigger, MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} }, }; // Parse the arguments. rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Get the IRQ object. rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[self->id]); // Allocate the IRQ object if it doesn't already exist. if (irq == NULL) { irq = m_new_obj(rp2_state_machine_irq_obj_t); irq->base.base.type = &mp_irq_type; irq->base.methods = (mp_irq_methods_t *)&rp2_state_machine_irq_methods; irq->base.parent = MP_OBJ_FROM_PTR(self); irq->base.handler = mp_const_none; irq->base.ishard = false; MP_STATE_PORT(rp2_state_machine_irq_obj[self->id]) = irq; } if (n_args > 1 || kw_args->used != 0) { // Configure IRQ. // Disable all IRQs while data is updated. irq_set_enabled(self->irq, false); // Update IRQ data. irq->base.handler = args[ARG_handler].u_obj; irq->base.ishard = args[ARG_hard].u_bool; irq->flags = 0; irq->trigger = args[ARG_trigger].u_int; // Enable IRQ if a handler is given. if (args[ARG_handler].u_obj == mp_const_none) { self->pio->inte0 &= ~(1 << (8 + self->sm)); } else { self->pio->inte0 |= 1 << (8 + self->sm); } if (self->pio->inte0) { irq_set_enabled(self->irq, true); } } return MP_OBJ_FROM_PTR(irq); } static MP_DEFINE_CONST_FUN_OBJ_KW(rp2_state_machine_irq_obj, 1, rp2_state_machine_irq); static const mp_rom_map_elem_t rp2_state_machine_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&rp2_state_machine_init_obj) }, { MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&rp2_state_machine_active_obj) }, { MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&rp2_state_machine_restart_obj) }, { MP_ROM_QSTR(MP_QSTR_exec), MP_ROM_PTR(&rp2_state_machine_exec_obj) }, { MP_ROM_QSTR(MP_QSTR_get), MP_ROM_PTR(&rp2_state_machine_get_obj) }, { MP_ROM_QSTR(MP_QSTR_put), MP_ROM_PTR(&rp2_state_machine_put_obj) }, { MP_ROM_QSTR(MP_QSTR_rx_fifo), MP_ROM_PTR(&rp2_state_machine_rx_fifo_obj) }, { MP_ROM_QSTR(MP_QSTR_tx_fifo), MP_ROM_PTR(&rp2_state_machine_tx_fifo_obj) }, { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&rp2_state_machine_irq_obj) }, }; static MP_DEFINE_CONST_DICT(rp2_state_machine_locals_dict, rp2_state_machine_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( rp2_state_machine_type, MP_QSTR_StateMachine, MP_TYPE_FLAG_NONE, make_new, rp2_state_machine_make_new, print, rp2_state_machine_print, buffer, rp2_state_machine_get_buffer, locals_dict, &rp2_state_machine_locals_dict ); static mp_uint_t rp2_state_machine_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in); rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[PIO_NUM(self->pio)]); irq_set_enabled(self->irq, false); irq->flags = 0; irq->trigger = new_trigger; irq_set_enabled(self->irq, true); return 0; } static mp_uint_t rp2_state_machine_irq_info(mp_obj_t self_in, mp_uint_t info_type) { rp2_state_machine_obj_t *self = MP_OBJ_TO_PTR(self_in); rp2_state_machine_irq_obj_t *irq = MP_STATE_PORT(rp2_state_machine_irq_obj[PIO_NUM(self->pio)]); if (info_type == MP_IRQ_INFO_FLAGS) { return irq->flags; } else if (info_type == MP_IRQ_INFO_TRIGGERS) { return irq->trigger; } return 0; } static const mp_irq_methods_t rp2_state_machine_irq_methods = { .trigger = rp2_state_machine_irq_trigger, .info = rp2_state_machine_irq_info, }; MP_REGISTER_ROOT_POINTER(void *rp2_pio_irq_obj[2]); MP_REGISTER_ROOT_POINTER(void *rp2_state_machine_irq_obj[8]);