/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2023 Damien P. George * Copyright (c) 2016 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/modmachine.c via MICROPY_PY_MACHINE_INCLUDEFILE. #include "modmachine.h" #include "xtirq.h" #include "os_type.h" #include "osapi.h" #include "etshal.h" #include "ets_alt_task.h" #include "user_interface.h" // #define MACHINE_WAKE_IDLE (0x01) // #define MACHINE_WAKE_SLEEP (0x02) #define MACHINE_WAKE_DEEPSLEEP (0x04) #define MICROPY_PY_MACHINE_EXTRA_GLOBALS \ { MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_lightsleep_obj) }, \ \ { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) }, \ { MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&esp_timer_type) }, \ { MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pyb_pin_type) }, \ { MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&machine_pwm_type) }, \ { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&mp_machine_soft_i2c_type) }, \ \ /* wake abilities */ \ { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(MACHINE_WAKE_DEEPSLEEP) }, \ \ /* reset causes */ \ { MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(REASON_DEFAULT_RST) }, \ { MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(REASON_EXT_SYS_RST) }, \ { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(REASON_DEEP_SLEEP_AWAKE) }, \ { MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(REASON_WDT_RST) }, \ { MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(REASON_SOFT_RESTART) }, \ static mp_obj_t mp_machine_get_freq(void) { return mp_obj_new_int(system_get_cpu_freq() * 1000000); } static void mp_machine_set_freq(size_t n_args, const mp_obj_t *args) { mp_int_t freq = mp_obj_get_int(args[0]) / 1000000; if (freq != 80 && freq != 160) { mp_raise_ValueError(MP_ERROR_TEXT("frequency can only be either 80Mhz or 160MHz")); } system_update_cpu_freq(freq); } NORETURN static void mp_machine_reset(void) { system_restart(); // we must not return for (;;) { ets_loop_iter(); } } static mp_int_t mp_machine_reset_cause(void) { return system_get_rst_info()->reason; } static mp_obj_t mp_machine_unique_id(void) { uint32_t id = system_get_chip_id(); return mp_obj_new_bytes((byte *)&id, sizeof(id)); } static void mp_machine_idle(void) { asm ("waiti 0"); mp_event_handle_nowait(); // handle any events after possibly a long wait (eg feed WDT) } static void mp_machine_lightsleep(size_t n_args, const mp_obj_t *args) { uint32_t max_us = 0xffffffff; if (n_args == 1) { mp_int_t max_ms = mp_obj_get_int(args[0]); if (max_ms < 0) { max_ms = 0; } max_us = max_ms * 1000; } uint32_t wifi_mode = wifi_get_opmode(); uint32_t start = system_get_time(); while (system_get_time() - start <= max_us) { mp_event_handle_nowait(); if (wifi_mode == NULL_MODE) { // Can only idle if the wifi is off asm ("waiti 0"); } } } NORETURN static void mp_machine_deepsleep(size_t n_args, const mp_obj_t *args) { // default to sleep forever uint32_t sleep_us = 0; // see if RTC.ALARM0 should wake the device if (pyb_rtc_alarm0_wake & MACHINE_WAKE_DEEPSLEEP) { uint64_t t = pyb_rtc_get_us_since_epoch(); if (pyb_rtc_alarm0_expiry <= t) { sleep_us = 1; // alarm already expired so wake immediately } else { uint64_t delta = pyb_rtc_alarm0_expiry - t; if (delta <= 0xffffffff) { // sleep for the desired time sleep_us = delta; } else { // overflow, just set to maximum sleep time sleep_us = 0xffffffff; } } } // if an argument is given then that's the maximum time to sleep for if (n_args == 1) { mp_int_t max_ms = mp_obj_get_int(args[0]); if (max_ms <= 0) { max_ms = 1; } uint32_t max_us = max_ms * 1000; if (sleep_us == 0 || max_us < sleep_us) { sleep_us = max_us; } } // prepare for RTC reset at wake up rtc_prepare_deepsleep(sleep_us); // put the device in a deep-sleep state system_deep_sleep_set_option(0); // default power down mode; TODO check this system_deep_sleep(sleep_us); for (;;) { // we must not return ets_loop_iter(); } } // These values are from the datasheet #define ESP_TIMER_US_MIN (100) #define ESP_TIMER_US_MAX (0xfffffff) #define ESP_TIMER_MS_MAX (0x689d0) typedef struct _esp_timer_obj_t { mp_obj_base_t base; os_timer_t timer; uint32_t remain_ms; // if non-zero, remaining time to handle large periods uint32_t period_ms; // if non-zero, periodic timer with a large period mp_obj_t callback; } esp_timer_obj_t; static void esp_timer_arm_ms(esp_timer_obj_t *self, uint32_t ms, bool repeat) { if (ms <= ESP_TIMER_MS_MAX) { self->remain_ms = 0; self->period_ms = 0; } else { self->remain_ms = ms - ESP_TIMER_MS_MAX; if (repeat) { repeat = false; self->period_ms = ms; } else { self->period_ms = 0; } ms = ESP_TIMER_MS_MAX; } os_timer_arm(&self->timer, ms, repeat); } static void esp_timer_arm_us(esp_timer_obj_t *self, uint32_t us, bool repeat) { if (us < ESP_TIMER_US_MIN) { us = ESP_TIMER_US_MIN; } if (us <= ESP_TIMER_US_MAX) { self->remain_ms = 0; self->period_ms = 0; os_timer_arm_us(&self->timer, us, repeat); } else { esp_timer_arm_ms(self, us / 1000, repeat); } } const mp_obj_type_t esp_timer_type; static void esp_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { esp_timer_obj_t *self = self_in; mp_printf(print, "Timer(%p)", &self->timer); } static mp_obj_t esp_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 1, false); esp_timer_obj_t *tim = mp_obj_malloc(esp_timer_obj_t, &esp_timer_type); return tim; } static void esp_timer_cb(void *arg) { esp_timer_obj_t *self = arg; if (self->remain_ms != 0) { // Handle periods larger than the maximum system period uint32_t next_period_ms = self->remain_ms; if (next_period_ms > ESP_TIMER_MS_MAX) { next_period_ms = ESP_TIMER_MS_MAX; } self->remain_ms -= next_period_ms; os_timer_arm(&self->timer, next_period_ms, false); } else { mp_sched_schedule(self->callback, self); if (self->period_ms != 0) { // A periodic timer with a larger period: reschedule it esp_timer_arm_ms(self, self->period_ms, true); } } } static mp_obj_t esp_timer_init_helper(esp_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_mode, ARG_callback, ARG_period, ARG_tick_hz, ARG_freq, }; static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_tick_hz, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, #if MICROPY_PY_BUILTINS_FLOAT { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, #else { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, #endif }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); self->callback = args[ARG_callback].u_obj; // Be sure to disarm timer before making any changes os_timer_disarm(&self->timer); os_timer_setfn(&self->timer, esp_timer_cb, self); #if MICROPY_PY_BUILTINS_FLOAT if (args[ARG_freq].u_obj != mp_const_none) { mp_float_t freq = mp_obj_get_float(args[ARG_freq].u_obj); if (freq < 0.001) { esp_timer_arm_ms(self, (mp_int_t)(1000 / freq), args[ARG_mode].u_int); } else { esp_timer_arm_us(self, (mp_int_t)(1000000 / freq), args[ARG_mode].u_int); } } #else if (args[ARG_freq].u_int != 0xffffffff) { esp_timer_arm_us(self, 1000000 / args[ARG_freq].u_int, args[ARG_mode].u_int); } #endif else { mp_int_t period = args[ARG_period].u_int; mp_int_t hz = args[ARG_tick_hz].u_int; if (hz == 1000) { esp_timer_arm_ms(self, period, args[ARG_mode].u_int); } else if (hz == 1000000) { esp_timer_arm_us(self, period, args[ARG_mode].u_int); } else { // Use a long long to ensure that we don't either overflow or loose accuracy uint64_t period_us = (((uint64_t)period) * 1000000) / hz; if (period_us < 0x80000000ull) { esp_timer_arm_us(self, (mp_int_t)period_us, args[ARG_mode].u_int); } else { esp_timer_arm_ms(self, (mp_int_t)(period_us / 1000), args[ARG_mode].u_int); } } } return mp_const_none; } static mp_obj_t esp_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return esp_timer_init_helper(args[0], n_args - 1, args + 1, kw_args); } static MP_DEFINE_CONST_FUN_OBJ_KW(esp_timer_init_obj, 1, esp_timer_init); static mp_obj_t esp_timer_deinit(mp_obj_t self_in) { esp_timer_obj_t *self = self_in; os_timer_disarm(&self->timer); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(esp_timer_deinit_obj, esp_timer_deinit); static const mp_rom_map_elem_t esp_timer_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp_timer_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&esp_timer_init_obj) }, // { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&esp_timer_callback_obj) }, { MP_ROM_QSTR(MP_QSTR_ONE_SHOT), MP_ROM_INT(false) }, { MP_ROM_QSTR(MP_QSTR_PERIODIC), MP_ROM_INT(true) }, }; static MP_DEFINE_CONST_DICT(esp_timer_locals_dict, esp_timer_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( esp_timer_type, MP_QSTR_Timer, MP_TYPE_FLAG_NONE, make_new, esp_timer_make_new, print, esp_timer_print, locals_dict, &esp_timer_locals_dict ); // Custom version of this function that feeds system WDT if necessary mp_uint_t machine_time_pulse_us(mp_hal_pin_obj_t pin, int pulse_level, mp_uint_t timeout_us) { int nchanges = 2; uint32_t start = system_get_time(); // in microseconds for (;;) { uint32_t dt = system_get_time() - start; // Check if pin changed to wanted value if (mp_hal_pin_read(pin) == pulse_level) { if (--nchanges == 0) { return dt; } pulse_level = 1 - pulse_level; start = system_get_time(); continue; } // Check for timeout if (dt >= timeout_us) { return (mp_uint_t)-nchanges; } // Only feed WDT every now and then, to make sure edge timing is accurate if ((dt & 0xffff) == 0xffff && !ets_loop_dont_feed_sw_wdt) { system_soft_wdt_feed(); } } }