/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Mike Teachman * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_i2s.c via MICROPY_PY_MACHINE_I2S_INCLUDEFILE. #include "py/mphal.h" #include "driver/i2s_std.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "esp_task.h" // Notes on this port's specific implementation of I2S: // - a FreeRTOS task is created to implement the asynchronous background operations // - a FreeRTOS queue is used to transfer the supplied buffer to the background task // - all sample data transfers use DMA #define I2S_TASK_PRIORITY (ESP_TASK_PRIO_MIN + 1) #define I2S_TASK_STACK_SIZE (2048) #define DMA_BUF_LEN_IN_I2S_FRAMES (256) // The transform buffer is used with the readinto() method to bridge the opaque DMA memory on the ESP devices // with the app buffer. It facilitates audio sample transformations. e.g. 32-bits samples to 16-bit samples. // The size of 240 bytes is an engineering optimum that balances transfer performance with an acceptable use of heap space #define SIZEOF_TRANSFORM_BUFFER_IN_BYTES (240) typedef enum { I2S_TX_TRANSFER, I2S_RX_TRANSFER, } direction_t; typedef struct _non_blocking_descriptor_t { mp_buffer_info_t appbuf; mp_obj_t callback; direction_t direction; } non_blocking_descriptor_t; typedef enum { DMA_MEMORY_FULL, DMA_MEMORY_NOT_FULL, DMA_MEMORY_EMPTY, DMA_MEMORY_NOT_EMPTY, } dma_buffer_status_t; typedef struct _machine_i2s_obj_t { mp_obj_base_t base; i2s_port_t i2s_id; i2s_chan_handle_t i2s_chan_handle; mp_hal_pin_obj_t sck; mp_hal_pin_obj_t ws; mp_hal_pin_obj_t sd; i2s_dir_t mode; i2s_data_bit_width_t bits; format_t format; int32_t rate; int32_t ibuf; mp_obj_t callback_for_non_blocking; io_mode_t io_mode; bool is_deinit; uint8_t transform_buffer[SIZEOF_TRANSFORM_BUFFER_IN_BYTES]; QueueHandle_t non_blocking_mode_queue; TaskHandle_t non_blocking_mode_task; dma_buffer_status_t dma_buffer_status; } machine_i2s_obj_t; static mp_obj_t machine_i2s_deinit(mp_obj_t self_in); // The frame map is used with the readinto() method to transform the audio sample data coming // from DMA memory (32-bit stereo, with the L and R channels reversed) to the format specified // in the I2S constructor. e.g. 16-bit mono static const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = { { 2, 3, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits { 0, 1, 2, 3, -1, -1, -1, -1 }, // Mono, 32-bits { 2, 3, 6, 7, -1, -1, -1, -1 }, // Stereo, 16-bits { 0, 1, 2, 3, 4, 5, 6, 7 }, // Stereo, 32-bits }; void machine_i2s_init0() { for (i2s_port_t p = 0; p < I2S_NUM_AUTO; p++) { MP_STATE_PORT(machine_i2s_obj)[p] = NULL; } } static int8_t get_frame_mapping_index(i2s_data_bit_width_t bits, format_t format) { if (format == MONO) { if (bits == I2S_DATA_BIT_WIDTH_16BIT) { return 0; } else { // 32 bits return 1; } } else { // STEREO if (bits == I2S_DATA_BIT_WIDTH_16BIT) { return 2; } else { // 32 bits return 3; } } } static i2s_data_bit_width_t get_dma_bits(uint8_t mode, i2s_data_bit_width_t bits) { if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) { return bits; } else { // Master Rx // read 32 bit samples for I2S hardware. e.g. MEMS microphones return I2S_DATA_BIT_WIDTH_32BIT; } } static i2s_slot_mode_t get_dma_format(uint8_t mode, format_t format) { if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) { if (format == MONO) { return I2S_SLOT_MODE_MONO; } else { // STEREO return I2S_SLOT_MODE_STEREO; } } else { // Master Rx // read stereo frames for all I2S hardware return I2S_SLOT_MODE_STEREO; } } static uint32_t get_dma_buf_count(uint8_t mode, i2s_data_bit_width_t bits, format_t format, int32_t ibuf) { // calculate how many DMA buffers need to be allocated uint32_t dma_frame_size_in_bytes = (get_dma_bits(mode, bits) / 8) * (get_dma_format(mode, format) == I2S_SLOT_MODE_STEREO ? 2: 1); uint32_t dma_buf_count = ibuf / (DMA_BUF_LEN_IN_I2S_FRAMES * dma_frame_size_in_bytes); return dma_buf_count; } static uint32_t fill_appbuf_from_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) { // copy audio samples from DMA memory to the app buffer // audio samples are read from DMA memory in chunks // loop, reading and copying chunks until the app buffer is filled // For asyncio mode, the loop will make an early exit if DMA memory becomes empty // Example: // a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample). // For every frame coming from DMA (8 bytes), 2 bytes are "cherry picked" and // copied to the supplied app buffer. // Thus, for every 1 byte copied to the app buffer, 4 bytes are read from DMA memory. // If a 8kB app buffer is supplied, 32kB of audio samples is read from DMA memory. uint32_t a_index = 0; uint8_t *app_p = appbuf->buf; uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1); uint32_t num_bytes_needed_from_dma = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes); while (num_bytes_needed_from_dma) { size_t num_bytes_requested_from_dma = MIN(sizeof(self->transform_buffer), num_bytes_needed_from_dma); size_t num_bytes_received_from_dma = 0; TickType_t delay; if (self->io_mode == ASYNCIO) { delay = 0; // stop i2s_channel_read() operation if DMA memory becomes empty } else { delay = portMAX_DELAY; // block until supplied buffer is filled } esp_err_t ret = i2s_channel_read( self->i2s_chan_handle, self->transform_buffer, num_bytes_requested_from_dma, &num_bytes_received_from_dma, delay); // i2s_channel_read returns ESP_ERR_TIMEOUT when buffer cannot be filled by the timeout delay. if ((self->io_mode != ASYNCIO) || ((self->io_mode == ASYNCIO) && (ret != ESP_ERR_TIMEOUT))) { check_esp_err(ret); } // process the transform buffer one frame at a time. // copy selected bytes from the transform buffer into the user supplied appbuf. // Example: // a MicroPython I2S object is configured for 16-bit mono. This configuration associates to // a frame map index of 0 = { 6, 7, -1, -1, -1, -1, -1, -1 } in the i2s_frame_map array // This mapping indicates: // appbuf[x+0] = frame[6] // appbuf[x+1] = frame[7] // frame bytes 0-5 are not used uint32_t t_index = 0; uint8_t f_index = get_frame_mapping_index(self->bits, self->format); while (t_index < num_bytes_received_from_dma) { uint8_t *transform_p = self->transform_buffer + t_index; for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) { int8_t t_to_a_mapping = i2s_frame_map[f_index][i]; if (t_to_a_mapping != -1) { *app_p++ = transform_p[t_to_a_mapping]; a_index++; } t_index++; } } num_bytes_needed_from_dma -= num_bytes_received_from_dma; if ((self->io_mode == ASYNCIO) && (num_bytes_received_from_dma < num_bytes_requested_from_dma)) { // Unable to fill the entire app buffer from DMA memory. This indicates all DMA RX buffers are empty. self->dma_buffer_status = DMA_MEMORY_EMPTY; break; } } return a_index; } static size_t copy_appbuf_to_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) { size_t num_bytes_written = 0; TickType_t delay; if (self->io_mode == ASYNCIO) { delay = 0; // stop i2s_channel_write() operation if DMA memory becomes full } else { delay = portMAX_DELAY; // block until supplied buffer is emptied } esp_err_t ret = i2s_channel_write(self->i2s_chan_handle, appbuf->buf, appbuf->len, &num_bytes_written, delay); // i2s_channel_write returns ESP_ERR_TIMEOUT when buffer cannot be emptied by the timeout delay. if ((self->io_mode != ASYNCIO) || ((self->io_mode == ASYNCIO) && (ret != ESP_ERR_TIMEOUT))) { check_esp_err(ret); } if ((self->io_mode == ASYNCIO) && (num_bytes_written < appbuf->len)) { // Unable to empty the entire app buffer into DMA memory. This indicates all DMA TX buffers are full. self->dma_buffer_status = DMA_MEMORY_FULL; } return num_bytes_written; } // FreeRTOS task used for non-blocking mode static void task_for_non_blocking_mode(void *self_in) { machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in; non_blocking_descriptor_t descriptor; for (;;) { if (xQueueReceive(self->non_blocking_mode_queue, &descriptor, portMAX_DELAY)) { if (descriptor.direction == I2S_TX_TRANSFER) { copy_appbuf_to_dma(self, &descriptor.appbuf); } else { // RX fill_appbuf_from_dma(self, &descriptor.appbuf); } mp_sched_schedule(descriptor.callback, MP_OBJ_FROM_PTR(self)); } } } // callback indicating that a DMA buffer was just filled with samples received from an I2S port static IRAM_ATTR bool i2s_rx_recv_callback(i2s_chan_handle_t handle, i2s_event_data_t *event, void *self_in) { machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in; self->dma_buffer_status = DMA_MEMORY_NOT_EMPTY; return false; } // callback indicating that samples in a DMA buffer were just transmitted to an I2S port static IRAM_ATTR bool i2s_tx_sent_callback(i2s_chan_handle_t handle, i2s_event_data_t *event, void *self_in) { machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in; self->dma_buffer_status = DMA_MEMORY_NOT_FULL; return false; } i2s_event_callbacks_t i2s_callbacks = { .on_recv = i2s_rx_recv_callback, .on_recv_q_ovf = NULL, .on_sent = i2s_tx_sent_callback, .on_send_q_ovf = NULL, }; i2s_event_callbacks_t i2s_callbacks_null = { .on_recv = NULL, .on_recv_q_ovf = NULL, .on_sent = NULL, .on_send_q_ovf = NULL, }; static void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, mp_arg_val_t *args) { // are Pins valid? int8_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : machine_pin_get_id(args[ARG_sck].u_obj); int8_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : machine_pin_get_id(args[ARG_ws].u_obj); int8_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : machine_pin_get_id(args[ARG_sd].u_obj); // is Mode valid? int8_t mode = args[ARG_mode].u_int; if ((mode != (MICROPY_PY_MACHINE_I2S_CONSTANT_RX)) && (mode != (MICROPY_PY_MACHINE_I2S_CONSTANT_TX))) { mp_raise_ValueError(MP_ERROR_TEXT("invalid mode")); } // is Bits valid? i2s_data_bit_width_t bits = args[ARG_bits].u_int; if ((bits != I2S_DATA_BIT_WIDTH_16BIT) && (bits != I2S_DATA_BIT_WIDTH_32BIT)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid bits")); } // is Format valid? format_t format = args[ARG_format].u_int; if ((format != STEREO) && (format != MONO)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid format")); } // is Rate valid? // Not checked: ESP-IDF I2S API does not indicate a valid range for sample rate // is Ibuf valid? // Not checked: ESP-IDF I2S API will return error if requested buffer size exceeds available memory self->sck = sck; self->ws = ws; self->sd = sd; self->mode = mode; self->bits = bits; self->format = format; self->rate = args[ARG_rate].u_int; self->ibuf = args[ARG_ibuf].u_int; self->callback_for_non_blocking = MP_OBJ_NULL; self->non_blocking_mode_queue = NULL; self->non_blocking_mode_task = NULL; self->io_mode = BLOCKING; self->is_deinit = false; if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) { self->dma_buffer_status = DMA_MEMORY_NOT_FULL; } else { // rx self->dma_buffer_status = DMA_MEMORY_NOT_EMPTY; } i2s_chan_config_t chan_config = I2S_CHANNEL_DEFAULT_CONFIG(self->i2s_id, I2S_ROLE_MASTER); chan_config.dma_desc_num = get_dma_buf_count(mode, bits, format, self->ibuf); chan_config.dma_frame_num = DMA_BUF_LEN_IN_I2S_FRAMES; chan_config.auto_clear = true; if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) { ESP_ERROR_CHECK(i2s_new_channel(&chan_config, &self->i2s_chan_handle, NULL)); } else { // rx ESP_ERROR_CHECK(i2s_new_channel(&chan_config, NULL, &self->i2s_chan_handle)); } i2s_std_slot_config_t slot_cfg = I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG(get_dma_bits(mode, bits), get_dma_format(mode, format)); slot_cfg.slot_mask = I2S_STD_SLOT_BOTH; i2s_std_config_t std_cfg = { .clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(self->rate), .slot_cfg = slot_cfg, .gpio_cfg = { .mclk = I2S_GPIO_UNUSED, .bclk = self->sck, .ws = self->ws, .invert_flags = { .mclk_inv = false, .bclk_inv = false, .ws_inv = false, }, }, }; if (mode == MICROPY_PY_MACHINE_I2S_CONSTANT_TX) { std_cfg.gpio_cfg.dout = self->sd; std_cfg.gpio_cfg.din = I2S_GPIO_UNUSED; } else { // rx std_cfg.gpio_cfg.dout = I2S_GPIO_UNUSED; std_cfg.gpio_cfg.din = self->sd; } ESP_ERROR_CHECK(i2s_channel_init_std_mode(self->i2s_chan_handle, &std_cfg)); ESP_ERROR_CHECK(i2s_channel_register_event_callback(self->i2s_chan_handle, &i2s_callbacks, self)); ESP_ERROR_CHECK(i2s_channel_enable(self->i2s_chan_handle)); } static machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id) { if (i2s_id < 0 || i2s_id >= I2S_NUM_AUTO) { mp_raise_ValueError(MP_ERROR_TEXT("invalid id")); } machine_i2s_obj_t *self; if (MP_STATE_PORT(machine_i2s_obj)[i2s_id] == NULL) { self = mp_obj_malloc_with_finaliser(machine_i2s_obj_t, &machine_i2s_type); MP_STATE_PORT(machine_i2s_obj)[i2s_id] = self; self->i2s_id = i2s_id; } else { self = MP_STATE_PORT(machine_i2s_obj)[i2s_id]; machine_i2s_deinit(self); } return self; } static void mp_machine_i2s_deinit(machine_i2s_obj_t *self) { if (!self->is_deinit) { ESP_ERROR_CHECK(i2s_channel_disable(self->i2s_chan_handle)); ESP_ERROR_CHECK(i2s_channel_register_event_callback(self->i2s_chan_handle, &i2s_callbacks_null, self)); ESP_ERROR_CHECK(i2s_del_channel(self->i2s_chan_handle)); if (self->non_blocking_mode_task != NULL) { vTaskDelete(self->non_blocking_mode_task); self->non_blocking_mode_task = NULL; } if (self->non_blocking_mode_queue != NULL) { vQueueDelete(self->non_blocking_mode_queue); self->non_blocking_mode_queue = NULL; } self->is_deinit = true; } } static void mp_machine_i2s_irq_update(machine_i2s_obj_t *self) { if (self->io_mode == NON_BLOCKING) { // create a queue linking the MicroPython task to a FreeRTOS task // that manages the non blocking mode of operation self->non_blocking_mode_queue = xQueueCreate(1, sizeof(non_blocking_descriptor_t)); // non-blocking mode requires a background FreeRTOS task if (xTaskCreatePinnedToCore( task_for_non_blocking_mode, "i2s_non_blocking", I2S_TASK_STACK_SIZE, self, I2S_TASK_PRIORITY, (TaskHandle_t *)&self->non_blocking_mode_task, MP_TASK_COREID) != pdPASS) { mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create I2S task")); } } else { if (self->non_blocking_mode_task != NULL) { vTaskDelete(self->non_blocking_mode_task); self->non_blocking_mode_task = NULL; } if (self->non_blocking_mode_queue != NULL) { vQueueDelete(self->non_blocking_mode_queue); self->non_blocking_mode_queue = NULL; } } } MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[I2S_NUM_AUTO]);