/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/gc.h" #include "py/mpthread.h" #include "py/mphal.h" #include "mptask.h" #include "task.h" #if MICROPY_PY_THREAD // this structure forms a linked list, one node per active thread typedef struct _mp_thread_t { TaskHandle_t id; // system id of thread int ready; // whether the thread is ready and running void *arg; // thread Python args, a GC root pointer void *stack; // pointer to the stack size_t stack_len; // number of words in the stack struct _mp_thread_t *next; } mp_thread_t; // the mutex controls access to the linked list static mp_thread_mutex_t thread_mutex; static mp_thread_t thread_entry0; static mp_thread_t *thread; // root pointer, handled bp mp_thread_gc_others void mp_thread_init(void) { mp_thread_mutex_init(&thread_mutex); mp_thread_set_state(&mp_state_ctx.thread); // create first entry in linked list of all threads thread = &thread_entry0; thread->id = xTaskGetCurrentTaskHandle(); thread->ready = 1; thread->arg = NULL; thread->stack = mpTaskStack; thread->stack_len = MICROPY_TASK_STACK_LEN; thread->next = NULL; } void mp_thread_gc_others(void) { mp_thread_mutex_lock(&thread_mutex, 1); for (mp_thread_t *th = thread; th != NULL; th = th->next) { gc_collect_root((void **)&th, 1); gc_collect_root(&th->arg, 1); // probably not needed if (th->id == xTaskGetCurrentTaskHandle()) { continue; } if (!th->ready) { continue; } gc_collect_root(th->stack, th->stack_len); // probably not needed } mp_thread_mutex_unlock(&thread_mutex); } mp_state_thread_t *mp_thread_get_state(void) { return pvTaskGetThreadLocalStoragePointer(NULL, 0); } void mp_thread_set_state(mp_state_thread_t *state) { vTaskSetThreadLocalStoragePointer(NULL, 0, state); } mp_uint_t mp_thread_get_id(void) { return (mp_uint_t)xTaskGetCurrentTaskHandle(); } void mp_thread_start(void) { mp_thread_mutex_lock(&thread_mutex, 1); for (mp_thread_t *th = thread; th != NULL; th = th->next) { if (th->id == xTaskGetCurrentTaskHandle()) { th->ready = 1; break; } } mp_thread_mutex_unlock(&thread_mutex); } static void *(*ext_thread_entry)(void *) = NULL; static void freertos_entry(void *arg) { if (ext_thread_entry) { ext_thread_entry(arg); } vTaskDelete(NULL); for (;;) { } } mp_uint_t mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) { // store thread entry function into a global variable so we can access it ext_thread_entry = entry; if (*stack_size == 0) { *stack_size = 4096; // default stack size } else if (*stack_size < 2048) { *stack_size = 2048; // minimum stack size } // allocate TCB, stack and linked-list node (must be outside thread_mutex lock) StaticTask_t *tcb = m_new(StaticTask_t, 1); StackType_t *stack = m_new(StackType_t, *stack_size / sizeof(StackType_t)); mp_thread_t *th = m_new_obj(mp_thread_t); mp_thread_mutex_lock(&thread_mutex, 1); // create thread TaskHandle_t id = xTaskCreateStatic(freertos_entry, "Thread", *stack_size / sizeof(void *), arg, 2, stack, tcb); if (id == NULL) { mp_thread_mutex_unlock(&thread_mutex); mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("can't create thread")); } // add thread to linked list of all threads th->id = id; th->ready = 0; th->arg = arg; th->stack = stack; th->stack_len = *stack_size / sizeof(StackType_t); th->next = thread; thread = th; mp_thread_mutex_unlock(&thread_mutex); // adjust stack_size to provide room to recover from hitting the limit *stack_size -= 512; MP_STATIC_ASSERT(sizeof(mp_uint_t) >= sizeof(TaskHandle_t)); return (mp_uint_t)id; } void mp_thread_finish(void) { mp_thread_mutex_lock(&thread_mutex, 1); // TODO unlink from list for (mp_thread_t *th = thread; th != NULL; th = th->next) { if (th->id == xTaskGetCurrentTaskHandle()) { th->ready = 0; break; } } mp_thread_mutex_unlock(&thread_mutex); } void mp_thread_mutex_init(mp_thread_mutex_t *mutex) { mutex->handle = xSemaphoreCreateMutexStatic(&mutex->buffer); } // To allow hard interrupts to work with threading we only take/give the semaphore // if we are not within an interrupt context and interrupts are enabled. int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) { if ((HAL_NVIC_INT_CTRL_REG & HAL_VECTACTIVE_MASK) == 0 && query_irq() == IRQ_STATE_ENABLED) { int ret = xSemaphoreTake(mutex->handle, wait ? portMAX_DELAY : 0); return ret == pdTRUE; } else { return 1; } } void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) { if ((HAL_NVIC_INT_CTRL_REG & HAL_VECTACTIVE_MASK) == 0 && query_irq() == IRQ_STATE_ENABLED) { xSemaphoreGive(mutex->handle); // TODO check return value } } #endif // MICROPY_PY_THREAD