/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Mike Teachman * Copyright (c) 2023 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/stream.h" #if MICROPY_PY_MACHINE_I2S #include "extmod/modmachine.h" // The I2S class has 3 modes of operation: // // Mode1: Blocking // - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write) // - this is the default mode of operation // // Mode2: Non-Blocking // - readinto() and write() methods return immediately // - buffer filling and emptying happens asynchronously to the main MicroPython task // - a callback function is called when the supplied buffer has been filled (read) or emptied (write) // - non-blocking mode is enabled when a callback is set with the irq() method // - implementation of asynchronous background operations is port specific // // Mode3: Asyncio // - implements the stream protocol // - asyncio mode is enabled when the ioctl() function is called // - the state of the internal ring buffer is used to detect that I2S samples can be read or written // // The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention: // Mono: little endian format // Stereo: little endian format, left channel first // // I2S terms: // "frame": consists of two audio samples (Left audio sample + Right audio sample) // // Misc: // - for Mono configuration: // - readinto method: samples are gathered from the L channel only // - write method: every sample is output to both the L and R channels // - for readinto method the I2S hardware is read using 8-byte frames // (this is standard for almost all I2S hardware, such as MEMS microphones) #define NUM_I2S_USER_FORMATS (4) #define I2S_RX_FRAME_SIZE_IN_BYTES (8) typedef enum { MONO, STEREO } format_t; typedef enum { BLOCKING, NON_BLOCKING, ASYNCIO } io_mode_t; // Arguments for I2S() constructor and I2S.init(). enum { ARG_sck, ARG_ws, ARG_sd, #if MICROPY_PY_MACHINE_I2S_MCK ARG_mck, #endif ARG_mode, ARG_bits, ARG_format, ARG_rate, ARG_ibuf, }; #if MICROPY_PY_MACHINE_I2S_RING_BUF typedef struct _ring_buf_t { uint8_t *buffer; size_t head; size_t tail; size_t size; } ring_buf_t; typedef struct _non_blocking_descriptor_t { mp_buffer_info_t appbuf; uint32_t index; bool copy_in_progress; } non_blocking_descriptor_t; static void ringbuf_init(ring_buf_t *rbuf, uint8_t *buffer, size_t size); static bool ringbuf_push(ring_buf_t *rbuf, uint8_t data); static bool ringbuf_pop(ring_buf_t *rbuf, uint8_t *data); static size_t ringbuf_available_data(ring_buf_t *rbuf); static size_t ringbuf_available_space(ring_buf_t *rbuf); static void fill_appbuf_from_ringbuf_non_blocking(machine_i2s_obj_t *self); static void copy_appbuf_to_ringbuf_non_blocking(machine_i2s_obj_t *self); #endif // MICROPY_PY_MACHINE_I2S_RING_BUF // The port must provide implementations of these low-level I2S functions. static void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, mp_arg_val_t *args); static machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id); static void mp_machine_i2s_deinit(machine_i2s_obj_t *self); static void mp_machine_i2s_irq_update(machine_i2s_obj_t *self); // The port provides implementations of the above in this file. #include MICROPY_PY_MACHINE_I2S_INCLUDEFILE #if MICROPY_PY_MACHINE_I2S_RING_BUF // Ring Buffer // Thread safe when used with these constraints: // - Single Producer, Single Consumer // - Sequential atomic operations // One byte of capacity is used to detect buffer empty/full static void ringbuf_init(ring_buf_t *rbuf, uint8_t *buffer, size_t size) { rbuf->buffer = buffer; rbuf->size = size; rbuf->head = 0; rbuf->tail = 0; } static bool ringbuf_push(ring_buf_t *rbuf, uint8_t data) { size_t next_tail = (rbuf->tail + 1) % rbuf->size; if (next_tail != rbuf->head) { rbuf->buffer[rbuf->tail] = data; rbuf->tail = next_tail; return true; } // full return false; } static bool ringbuf_pop(ring_buf_t *rbuf, uint8_t *data) { if (rbuf->head == rbuf->tail) { // empty return false; } *data = rbuf->buffer[rbuf->head]; rbuf->head = (rbuf->head + 1) % rbuf->size; return true; } static bool ringbuf_is_empty(ring_buf_t *rbuf) { return rbuf->head == rbuf->tail; } static bool ringbuf_is_full(ring_buf_t *rbuf) { return ((rbuf->tail + 1) % rbuf->size) == rbuf->head; } static size_t ringbuf_available_data(ring_buf_t *rbuf) { return (rbuf->tail - rbuf->head + rbuf->size) % rbuf->size; } static size_t ringbuf_available_space(ring_buf_t *rbuf) { return rbuf->size - ringbuf_available_data(rbuf) - 1; } static uint32_t fill_appbuf_from_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) { // copy audio samples from the ring buffer to the app buffer // loop, copying samples until the app buffer is filled // For asyncio mode, the loop will make an early exit if the ring buffer becomes empty // Example: // a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample). // For every frame coming from the ring buffer (8 bytes), 2 bytes are "cherry picked" and // copied to the supplied app buffer. // Thus, for every 1 byte copied to the app buffer, 4 bytes are read from the ring buffer. // If a 8kB app buffer is supplied, 32kB of audio samples is read from the ring buffer. uint32_t num_bytes_copied_to_appbuf = 0; uint8_t *app_p = (uint8_t *)appbuf->buf; uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1); uint32_t num_bytes_needed_from_ringbuf = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes); uint8_t discard_byte; while (num_bytes_needed_from_ringbuf) { uint8_t f_index = get_frame_mapping_index(self->bits, self->format); for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) { int8_t r_to_a_mapping = i2s_frame_map[f_index][i]; if (r_to_a_mapping != -1) { if (self->io_mode == BLOCKING) { // poll the ringbuf until a sample becomes available, copy into appbuf using the mapping transform while (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) { ; } num_bytes_copied_to_appbuf++; } else if (self->io_mode == ASYNCIO) { if (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) { // ring buffer is empty, exit goto exit; } else { num_bytes_copied_to_appbuf++; } } else { return 0; // should never get here (non-blocking mode does not use this function) } } else { // r_a_mapping == -1 // discard unused byte from ring buffer if (self->io_mode == BLOCKING) { // poll the ringbuf until a sample becomes available while (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) { ; } } else if (self->io_mode == ASYNCIO) { if (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) { // ring buffer is empty, exit goto exit; } } else { return 0; // should never get here (non-blocking mode does not use this function) } } num_bytes_needed_from_ringbuf--; } app_p += appbuf_sample_size_in_bytes; } exit: return num_bytes_copied_to_appbuf; } // function is used in IRQ context static void fill_appbuf_from_ringbuf_non_blocking(machine_i2s_obj_t *self) { // attempt to copy a block of audio samples from the ring buffer to the supplied app buffer. // audio samples will be formatted as part of the copy operation uint32_t num_bytes_copied_to_appbuf = 0; uint8_t *app_p = &(((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index]); uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1); uint32_t num_bytes_remaining_to_copy_to_appbuf = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index; uint32_t num_bytes_remaining_to_copy_from_ring_buffer = num_bytes_remaining_to_copy_to_appbuf * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes); uint32_t num_bytes_needed_from_ringbuf = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy_from_ring_buffer); uint8_t discard_byte; if (ringbuf_available_data(&self->ring_buffer) >= num_bytes_needed_from_ringbuf) { while (num_bytes_needed_from_ringbuf) { uint8_t f_index = get_frame_mapping_index(self->bits, self->format); for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) { int8_t r_to_a_mapping = i2s_frame_map[f_index][i]; if (r_to_a_mapping != -1) { ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping); num_bytes_copied_to_appbuf++; } else { // r_a_mapping == -1 // discard unused byte from ring buffer ringbuf_pop(&self->ring_buffer, &discard_byte); } num_bytes_needed_from_ringbuf--; } app_p += appbuf_sample_size_in_bytes; } self->non_blocking_descriptor.index += num_bytes_copied_to_appbuf; if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) { self->non_blocking_descriptor.copy_in_progress = false; mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self)); } } } static uint32_t copy_appbuf_to_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) { // copy audio samples from the app buffer to the ring buffer // loop, reading samples until the app buffer is emptied // for asyncio mode, the loop will make an early exit if the ring buffer becomes full uint32_t a_index = 0; while (a_index < appbuf->len) { if (self->io_mode == BLOCKING) { // copy a byte to the ringbuf when space becomes available while (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) { ; } a_index++; } else if (self->io_mode == ASYNCIO) { if (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) { // ring buffer is full, exit break; } else { a_index++; } } else { return 0; // should never get here (non-blocking mode does not use this function) } } return a_index; } // function is used in IRQ context static void copy_appbuf_to_ringbuf_non_blocking(machine_i2s_obj_t *self) { // copy audio samples from app buffer into ring buffer uint32_t num_bytes_remaining_to_copy = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index; uint32_t num_bytes_to_copy = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy); if (ringbuf_available_space(&self->ring_buffer) >= num_bytes_to_copy) { for (uint32_t i = 0; i < num_bytes_to_copy; i++) { ringbuf_push(&self->ring_buffer, ((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index + i]); } self->non_blocking_descriptor.index += num_bytes_to_copy; if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) { self->non_blocking_descriptor.copy_in_progress = false; mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self)); } } } #endif // MICROPY_PY_MACHINE_I2S_RING_BUF MP_NOINLINE static void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, #if MICROPY_PY_MACHINE_I2S_MCK { MP_QSTR_mck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, #endif { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_machine_i2s_init_helper(self, args); } static void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "I2S(id=%u,\n" "sck="MP_HAL_PIN_FMT ",\n" "ws="MP_HAL_PIN_FMT ",\n" "sd="MP_HAL_PIN_FMT ",\n" #if MICROPY_PY_MACHINE_I2S_MCK "mck="MP_HAL_PIN_FMT ",\n" #endif "mode=%u,\n" "bits=%u, format=%u,\n" "rate=%d, ibuf=%d)", self->i2s_id, mp_hal_pin_name(self->sck), mp_hal_pin_name(self->ws), mp_hal_pin_name(self->sd), #if MICROPY_PY_MACHINE_I2S_MCK mp_hal_pin_name(self->mck), #endif self->mode, self->bits, self->format, self->rate, self->ibuf ); } static mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) { mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true); mp_int_t i2s_id = mp_obj_get_int(args[0]); machine_i2s_obj_t *self = mp_machine_i2s_make_new_instance(i2s_id); mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args); machine_i2s_init_helper(self, n_pos_args - 1, args + 1, &kw_args); return MP_OBJ_FROM_PTR(self); } // I2S.init(...) static mp_obj_t machine_i2s_init(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_machine_i2s_deinit(self); machine_i2s_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_init_obj, 1, machine_i2s_init); // I2S.deinit() static mp_obj_t machine_i2s_deinit(mp_obj_t self_in) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_machine_i2s_deinit(self); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(machine_i2s_deinit_obj, machine_i2s_deinit); // I2S.irq(handler) static mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (handler != mp_const_none && !mp_obj_is_callable(handler)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid callback")); } if (handler != mp_const_none) { self->io_mode = NON_BLOCKING; } else { self->io_mode = BLOCKING; } self->callback_for_non_blocking = handler; mp_machine_i2s_irq_update(self); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq); // Shift() is typically used as a volume control. // shift=1 increases volume by 6dB, shift=-1 decreases volume by 6dB static mp_obj_t machine_i2s_shift(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buf, ARG_bits, ARG_shift}; static const mp_arg_t allowed_args[] = { { MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_bits, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_shift, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_RW); int16_t *buf_16 = bufinfo.buf; int32_t *buf_32 = bufinfo.buf; uint8_t bits = args[ARG_bits].u_int; int8_t shift = args[ARG_shift].u_int; uint32_t num_audio_samples; switch (bits) { case 16: num_audio_samples = bufinfo.len / sizeof(uint16_t); break; case 32: num_audio_samples = bufinfo.len / sizeof(uint32_t); break; default: mp_raise_ValueError(MP_ERROR_TEXT("invalid bits")); break; } for (uint32_t i = 0; i < num_audio_samples; i++) { switch (bits) { case 16: if (shift >= 0) { buf_16[i] = buf_16[i] << shift; } else { buf_16[i] = buf_16[i] >> abs(shift); } break; case 32: if (shift >= 0) { buf_32[i] = buf_32[i] << shift; } else { buf_32[i] = buf_32[i] >> abs(shift); } break; } } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_shift_fun_obj, 0, machine_i2s_shift); static MP_DEFINE_CONST_STATICMETHOD_OBJ(machine_i2s_shift_obj, MP_ROM_PTR(&machine_i2s_shift_fun_obj)); static const mp_rom_map_elem_t machine_i2s_locals_dict_table[] = { // Methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2s_init_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2s_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2s_irq_obj) }, #if MICROPY_PY_MACHINE_I2S_FINALISER { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&machine_i2s_deinit_obj) }, #endif // Static method { MP_ROM_QSTR(MP_QSTR_shift), MP_ROM_PTR(&machine_i2s_shift_obj) }, // Constants { MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_INT(MICROPY_PY_MACHINE_I2S_CONSTANT_RX) }, { MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_INT(MICROPY_PY_MACHINE_I2S_CONSTANT_TX) }, { MP_ROM_QSTR(MP_QSTR_STEREO), MP_ROM_INT(STEREO) }, { MP_ROM_QSTR(MP_QSTR_MONO), MP_ROM_INT(MONO) }, }; MP_DEFINE_CONST_DICT(machine_i2s_locals_dict, machine_i2s_locals_dict_table); static mp_uint_t machine_i2s_stream_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->mode != MICROPY_PY_MACHINE_I2S_CONSTANT_RX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1); if (size % appbuf_sample_size_in_bytes != 0) { *errcode = MP_EINVAL; return MP_STREAM_ERROR; } if (size == 0) { return 0; } if (self->io_mode == NON_BLOCKING) { #if MICROPY_PY_MACHINE_I2S_RING_BUF self->non_blocking_descriptor.appbuf.buf = (void *)buf_in; self->non_blocking_descriptor.appbuf.len = size; self->non_blocking_descriptor.index = 0; self->non_blocking_descriptor.copy_in_progress = true; #else non_blocking_descriptor_t descriptor; descriptor.appbuf.buf = (void *)buf_in; descriptor.appbuf.len = size; descriptor.callback = self->callback_for_non_blocking; descriptor.direction = I2S_RX_TRANSFER; // send the descriptor to the task that handles non-blocking mode xQueueSend(self->non_blocking_mode_queue, &descriptor, 0); #endif return size; } else { // blocking or asyncio mode mp_buffer_info_t appbuf; appbuf.buf = (void *)buf_in; appbuf.len = size; #if MICROPY_PY_MACHINE_I2S_RING_BUF uint32_t num_bytes_read = fill_appbuf_from_ringbuf(self, &appbuf); #else uint32_t num_bytes_read = fill_appbuf_from_dma(self, &appbuf); #endif return num_bytes_read; } } static mp_uint_t machine_i2s_stream_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->mode != MICROPY_PY_MACHINE_I2S_CONSTANT_TX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } if (size == 0) { return 0; } if (self->io_mode == NON_BLOCKING) { #if MICROPY_PY_MACHINE_I2S_RING_BUF self->non_blocking_descriptor.appbuf.buf = (void *)buf_in; self->non_blocking_descriptor.appbuf.len = size; self->non_blocking_descriptor.index = 0; self->non_blocking_descriptor.copy_in_progress = true; #else non_blocking_descriptor_t descriptor; descriptor.appbuf.buf = (void *)buf_in; descriptor.appbuf.len = size; descriptor.callback = self->callback_for_non_blocking; descriptor.direction = I2S_TX_TRANSFER; // send the descriptor to the task that handles non-blocking mode xQueueSend(self->non_blocking_mode_queue, &descriptor, 0); #endif return size; } else { // blocking or asyncio mode mp_buffer_info_t appbuf; appbuf.buf = (void *)buf_in; appbuf.len = size; #if MICROPY_PY_MACHINE_I2S_RING_BUF uint32_t num_bytes_written = copy_appbuf_to_ringbuf(self, &appbuf); #else uint32_t num_bytes_written = copy_appbuf_to_dma(self, &appbuf); #endif return num_bytes_written; } } static mp_uint_t machine_i2s_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t ret; uintptr_t flags = arg; self->io_mode = ASYNCIO; // a call to ioctl() is an indication that asyncio is being used if (request == MP_STREAM_POLL) { ret = 0; if (flags & MP_STREAM_POLL_RD) { if (self->mode != MICROPY_PY_MACHINE_I2S_CONSTANT_RX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } #if MICROPY_PY_MACHINE_I2S_RING_BUF if (!ringbuf_is_empty(&self->ring_buffer)) { ret |= MP_STREAM_POLL_RD; } #else if (self->dma_buffer_status == DMA_MEMORY_NOT_EMPTY) { ret |= MP_STREAM_POLL_RD; } #endif } if (flags & MP_STREAM_POLL_WR) { if (self->mode != MICROPY_PY_MACHINE_I2S_CONSTANT_TX) { *errcode = MP_EPERM; return MP_STREAM_ERROR; } #if MICROPY_PY_MACHINE_I2S_RING_BUF if (!ringbuf_is_full(&self->ring_buffer)) { ret |= MP_STREAM_POLL_WR; } #else if (self->dma_buffer_status == DMA_MEMORY_NOT_FULL) { ret |= MP_STREAM_POLL_WR; } #endif } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } static const mp_stream_p_t i2s_stream_p = { .read = machine_i2s_stream_read, .write = machine_i2s_stream_write, .ioctl = machine_i2s_ioctl, .is_text = false, }; MP_DEFINE_CONST_OBJ_TYPE( machine_i2s_type, MP_QSTR_I2S, MP_TYPE_FLAG_ITER_IS_STREAM, make_new, machine_i2s_make_new, print, machine_i2s_print, protocol, &i2s_stream_p, locals_dict, &machine_i2s_locals_dict ); #endif // MICROPY_PY_MACHINE_I2S