SA_SIGINFO allows the signal handler to access more information about
the signal, especially useful in a threaded environment. The extra
information is not currently used but it may prove useful in the future.
GC_EXIT() can cause a pending thread (waiting on the mutex) to be
scheduled right away. This other thread may trigger a garbage
collection. If the pointer to the newly-allocated block (allocated by
the original thread) is not computed before the switch (so it's just left
as a block number) then the block will be wrongly reclaimed.
This patch makes sure the pointer is computed before allowing any thread
switch to occur.
By using a single, global mutex, all memory-related functions (alloc,
free, realloc, collect, etc) are made thread safe. This means that only
one thread can be in such a function at any one time.
The linker flag --gc-sections is not available on the linker used on
Mac OS X which results in an error when linking micropython on Mac OS X.
Therefore move this option to the LDFLAGS_ARCH variable on non Darwin
systems. According to http://stackoverflow.com/a/17710056 the equivalent
to --gc-sections is -dead_strip thus this option is used for the
LDFLAGS_ARCH on Darwin systems.
In particular, the WeMOS D1 Mini board comes with a shield that has a
64x48 OLED display. This patch makes it display properly, with the upper
left pixel being at (0, 0) and not (32, 0).
I tried to do this with the configuration commands, but there doesn't
seem to be a command that would set the column offset (there is one for
the line offset, though).
gcc 6.1.1 warns when indentation is misleading, and in this case the
formatting of the code really is misleading. So adjust the formatting
to be clear of the meaning of the code.
Storing a chain of pbuf was an original design of @pfalcon's lwIP socket
module. The problem with storing just one, like modlwip does is that
"peer closed connection" notification is completely asynchronous and out of
band. So, there may be following sequence of actions:
1. pbuf #1 arrives, and stored in a socket.
2. pbuf #2 arrives, and rejected, which causes lwIP to put it into a
queue to re-deliver later.
3. "Peer closed connection" is signaled, and socket is set at such status.
4. pbuf #1 is processed.
5. There's no stored pbufs in teh socket, and socket status is "peer closed
connection", so EOF is returned to a client.
6. pbuf #2 gets redelivered.
Apparently, there's no easy workaround for this, except to queue all
incoming pbufs in a socket. This may lead to increased memory pressure,
as number of pending packets would be regulated only by TCP/IP flow
control, whereas with previous setup lwIP had a global overlook of number
packets waiting for redelivery and could regulate them centrally.
This allows to define an abstract base class which would translate
C-level protocol to Python method calls, and any subclass inheriting
from it will support this feature. This in particular actually enables
recently introduced machine.PinBase class.
Allows to translate C-level pin API to Python-level pin API. In other
words, allows to implement a pin class and Python which will be usable
for efficient C-coded algorithms, like bitbanging SPI/I2C, time_pulse,
etc.