The STATIC macro was introduced a very long time ago in commit
d5df6cd44a. The original reason for this was
to have the option to define it to nothing so that all static functions
become global functions and therefore visible to certain debug tools, so
one could do function size comparison and other things.
This STATIC feature is rarely (if ever) used. And with the use of LTO and
heavy inline optimisation, analysing the size of individual functions when
they are not static is not a good representation of the size of code when
fully optimised.
So the macro does not have much use and it's simpler to just remove it.
Then you know exactly what it's doing. For example, newcomers don't have
to learn what the STATIC macro is and why it exists. Reading the code is
also less "loud" with a lowercase static.
One other minor point in favour of removing it, is that it stops bugs with
`STATIC inline`, which should always be `static inline`.
Methodology for this commit was:
1) git ls-files | egrep '\.[ch]$' | \
xargs sed -Ei "s/(^| )STATIC($| )/\1static\2/"
2) Do some manual cleanup in the diff by searching for the word STATIC in
comments and changing those back.
3) "git-grep STATIC docs/", manually fixed those cases.
4) "rg -t python STATIC", manually fixed codegen lines that used STATIC.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
Separate low level flash access from mimxrt flash driver object. Allows
better abstraction from hardware for testing and reuse in other areas (e.g.
bootloader).
Signed-off-by: Philipp Ebensberger <philipp.ebensberger@3bricks-software.de>
The RT1176 has two cores, but the actual firmware supports only the CM7.
There are currently no good plans on how to use the CM4.
The actual MIMXRT1170_EVK board is on par with the existing MIMXRT boards,
with the following extensions:
- Use 64 MB RAM for the heap.
- Support both LAN interfaces as LAN(0) and LAN(1), with LAN(1)
being the 1GB interface.
The dual LAN port interface can eventually be adapted as well for the
RT1062 MCU.
This work was done in collaboration with @alphaFred.
Instead of being an explicit field, it's now a slot like all the other
methods.
This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Thanks for the hint, Damien. The DEBUG build got very large recently.
The major difference is, that inline function are now inlined and
not included as a function. That's good and maybe bad. The good thing is,
that the code speed si now close to the final code. It could be worse
in single step debugging. I'll see.
Setting this option caused a new warning and a formatting error
to pop up at different places. Fixed as well.
Adds support for SDRAM via `SEMC` peripheral. SDRAM support can be
enabled in the mpconfigboard.mk file by setting `MICROPY_HW_SDRAM_AVAIL`
to `1` and poviding the size of the RAM via `MICROPY_HW_FLASH_SIZE`.
When SDRAM support is enabled the whole SDRAM is currently used used
for MicroPython heap.
Signed-off-by: Philipp Ebensberger
Hyperflash is used by the MIMXRT1050_EVKB, MIMXRT1060_EVK and
MIMXRT1064_EVK boards.
This commit includes:
- add support for Hyperflash
- modify MIMXRT1060_EVK and MIMXRT1064_EVK to change from QSPI to
hyperflash.
- minor incidental changes to other boards so they still build
Note: Erasing a sector on the hyperflash is slow. It takes about a second,
which seems too long, but matches the data sheet.
This commit adds full support for a filesystem on all boards, with a block
device object mimxrt.Flash() and uos.VfsLfs2 enabled.
Main changes are:
- Refactoring of linker scripts to accomodate reserved area for VFS. VFS
will take up most of the available flash. 1M is reserved for code. 9K is
reserved for flash configuration, interrupts, etc.
- Addition of _boot.py with filesystem init code, called from main.c.
- Definition of the mimxrt module with a Flash class in modmimxrt.[ch].
- Implementation of a flash driver class in mimxrt_flash.c. All flashing
related functions are stored in ITCM RAM.
- Addition of the uos module with filesystem functions.
- Implementation of uos.urandom() for the sake of completeness of the uos
module.
It uses sample code from CircuitPython supplied under MIT license, which
uses the NXP SDK example code.
Done in collaboration with Philipp Ebensberger aka @alphaFred who
contributed the essential part to enable writing to flash while code is
executing, among other things.