micropython/ports/stm32/storage.c

478 wiersze
18 KiB
C
Czysty Zwykły widok Historia

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "extmod/vfs_fat.h"
#include "systick.h"
#include "led.h"
#include "storage.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_STORAGE
#define STORAGE_SYSTICK_MASK (0x1ff) // 512ms
#define STORAGE_IDLE_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & STORAGE_SYSTICK_MASK) == 0)
#if defined(MICROPY_HW_BDEV2_IOCTL)
#define FLASH_PART2_START_BLOCK (FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0))
#endif
static bool storage_is_initialised = false;
static void storage_systick_callback(uint32_t ticks_ms);
void storage_init(void) {
if (!storage_is_initialised) {
storage_is_initialised = true;
systick_enable_dispatch(SYSTICK_DISPATCH_STORAGE, storage_systick_callback);
MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_INIT, 0);
#if defined(MICROPY_HW_BDEV2_IOCTL)
MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_INIT, 0);
#endif
// Enable the flash IRQ, which is used to also call our storage IRQ handler
// It must go at the same priority as USB (see comment in irq.h).
NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH);
HAL_NVIC_EnableIRQ(FLASH_IRQn);
}
}
uint32_t storage_get_block_size(void) {
return FLASH_BLOCK_SIZE;
}
uint32_t storage_get_block_count(void) {
#if defined(MICROPY_HW_BDEV2_IOCTL)
return FLASH_PART2_START_BLOCK + MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0);
#else
return FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0);
#endif
}
static void storage_systick_callback(uint32_t ticks_ms) {
if (STORAGE_IDLE_TICK(ticks_ms)) {
// Trigger a FLASH IRQ to execute at a lower priority
#if __CORTEX_M == 0
NVIC_SetPendingIRQ(FLASH_IRQn);
#else
NVIC->STIR = FLASH_IRQn;
#endif
}
}
void FLASH_IRQHandler(void) {
IRQ_ENTER(FLASH_IRQn);
MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_IRQ_HANDLER, 0);
#if defined(MICROPY_HW_BDEV2_IOCTL)
MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_IRQ_HANDLER, 0);
#endif
IRQ_EXIT(FLASH_IRQn);
}
void storage_flush(void) {
MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_SYNC, 0);
#if defined(MICROPY_HW_BDEV2_IOCTL)
MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_SYNC, 0);
#endif
}
static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
bool storage_read_block(uint8_t *dest, uint32_t block) {
if (block == 0) {
// fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0));
#if defined(MICROPY_HW_BDEV2_IOCTL)
build_partition(dest + 462, 0, 0x01 /* FAT12 */, FLASH_PART2_START_BLOCK, MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0));
#else
build_partition(dest + 462, 0, 0, 0, 0);
#endif
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
#if defined(MICROPY_HW_BDEV_READBLOCK)
} else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) {
return MICROPY_HW_BDEV_READBLOCK(dest, block - FLASH_PART1_START_BLOCK);
#endif
} else {
return false;
}
}
bool storage_write_block(const uint8_t *src, uint32_t block) {
if (block == 0) {
// can't write MBR, but pretend we did
return true;
#if defined(MICROPY_HW_BDEV_WRITEBLOCK)
} else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) {
return MICROPY_HW_BDEV_WRITEBLOCK(src, block - FLASH_PART1_START_BLOCK);
#endif
} else {
return false;
}
}
int storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
#if defined(MICROPY_HW_BDEV_READBLOCKS)
if (FLASH_PART1_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) {
return MICROPY_HW_BDEV_READBLOCKS(dest, block_num - FLASH_PART1_START_BLOCK, num_blocks);
}
#endif
#if defined(MICROPY_HW_BDEV2_READBLOCKS)
if (FLASH_PART2_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART2_START_BLOCK + MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) {
return MICROPY_HW_BDEV2_READBLOCKS(dest, block_num - FLASH_PART2_START_BLOCK, num_blocks);
}
#endif
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
return -MP_EIO; // error
}
}
return 0; // success
}
int storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
#if defined(MICROPY_HW_BDEV_WRITEBLOCKS)
if (FLASH_PART1_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART1_START_BLOCK + MICROPY_HW_BDEV_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) {
return MICROPY_HW_BDEV_WRITEBLOCKS(src, block_num - FLASH_PART1_START_BLOCK, num_blocks);
}
#endif
#if defined(MICROPY_HW_BDEV2_WRITEBLOCKS)
if (FLASH_PART2_START_BLOCK <= block_num && block_num + num_blocks <= FLASH_PART2_START_BLOCK + MICROPY_HW_BDEV2_IOCTL(BDEV_IOCTL_NUM_BLOCKS, 0)) {
return MICROPY_HW_BDEV2_WRITEBLOCKS(src, block_num - FLASH_PART2_START_BLOCK, num_blocks);
}
#endif
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
return -MP_EIO; // error
}
}
return 0; // success
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
#ifdef MICROPY_HW_BDEV_SPIFLASH_EXTENDED
// Board defined an external SPI flash for use with extended block protocol
#define MICROPY_HW_BDEV_BLOCKSIZE_EXT (MP_SPIFLASH_ERASE_BLOCK_SIZE)
#define MICROPY_HW_BDEV_READBLOCKS_EXT(dest, bl, off, len) \
(spi_bdev_readblocks_raw(MICROPY_HW_BDEV_SPIFLASH_EXTENDED, (dest), (bl), (off), (len)))
#define MICROPY_HW_BDEV_WRITEBLOCKS_EXT(src, bl, off, len) \
(spi_bdev_writeblocks_raw(MICROPY_HW_BDEV_SPIFLASH_EXTENDED, (src), (bl), (off), (len)))
#define MICROPY_HW_BDEV_ERASEBLOCKS_EXT(bl, len) \
(spi_bdev_eraseblocks_raw(MICROPY_HW_BDEV_SPIFLASH_EXTENDED, (bl), (len)))
#elif (MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2) && MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE
// Board uses littlefs and internal flash, so enable extended block protocol on internal flash
#define MICROPY_HW_BDEV_BLOCKSIZE_EXT (FLASH_BLOCK_SIZE)
#define MICROPY_HW_BDEV_READBLOCKS_EXT(dest, bl, off, len) (flash_bdev_readblocks_ext((dest), (bl), (off), (len)))
#define MICROPY_HW_BDEV_WRITEBLOCKS_EXT(dest, bl, off, len) (flash_bdev_writeblocks_ext((dest), (bl), (off), (len)))
#endif
#ifndef MICROPY_HW_BDEV_BLOCKSIZE_EXT
#define MICROPY_HW_BDEV_BLOCKSIZE_EXT (FLASH_BLOCK_SIZE)
#endif
#if defined(MICROPY_HW_BDEV_READBLOCKS_EXT)
// Size of blocks is MICROPY_HW_BDEV_BLOCKSIZE_EXT
int storage_readblocks_ext(uint8_t *dest, uint32_t block, uint32_t offset, uint32_t len) {
return MICROPY_HW_BDEV_READBLOCKS_EXT(dest, block, offset, len);
}
#endif
typedef struct _pyb_flash_obj_t {
mp_obj_base_t base;
uint32_t start; // in bytes
uint32_t len; // in bytes
bool use_native_block_size;
} pyb_flash_obj_t;
// This Flash object represents the entire available flash, with emulated partition table at start
const pyb_flash_obj_t pyb_flash_obj = {
{ &pyb_flash_type },
-(FLASH_PART1_START_BLOCK * FLASH_BLOCK_SIZE), // to offset FLASH_PART1_START_BLOCK
0, // actual size handled in ioctl, MP_BLOCKDEV_IOCTL_BLOCK_COUNT case
};
STATIC void pyb_flash_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_flash_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self == &pyb_flash_obj) {
mp_printf(print, "Flash()");
} else {
mp_printf(print, "Flash(start=%u, len=%u)", self->start, self->len);
}
}
STATIC mp_obj_t pyb_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Parse arguments
enum { ARG_start, ARG_len };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_start].u_int == -1 && args[ARG_len].u_int == -1) {
// Default singleton object that accesses entire flash, including virtual partition table
return MP_OBJ_FROM_PTR(&pyb_flash_obj);
}
pyb_flash_obj_t *self = mp_obj_malloc(pyb_flash_obj_t, &pyb_flash_type);
self->use_native_block_size = false;
uint32_t bl_len = (storage_get_block_count() - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE;
mp_int_t start = args[ARG_start].u_int;
if (start == -1) {
start = 0;
} else if (!(0 <= start && start < bl_len && start % MICROPY_HW_BDEV_BLOCKSIZE_EXT == 0)) {
mp_raise_ValueError(NULL);
}
mp_int_t len = args[ARG_len].u_int;
if (len == -1) {
len = bl_len - start;
} else if (!(0 < len && start + len <= bl_len && len % MICROPY_HW_BDEV_BLOCKSIZE_EXT == 0)) {
mp_raise_ValueError(NULL);
}
self->start = start;
self->len = len;
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_flash_readblocks(size_t n_args, const mp_obj_t *args) {
pyb_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t block_num = mp_obj_get_int(args[1]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = -MP_EIO;
if (n_args == 3) {
// Cast self->start to signed in case it's pyb_flash_obj with negative start
block_num += FLASH_PART1_START_BLOCK + (int32_t)self->start / FLASH_BLOCK_SIZE;
ret = storage_read_blocks(bufinfo.buf, block_num, bufinfo.len / FLASH_BLOCK_SIZE);
}
#if defined(MICROPY_HW_BDEV_READBLOCKS_EXT)
else if (self != &pyb_flash_obj) {
// Extended block read on a sub-section of the flash storage
uint32_t offset = mp_obj_get_int(args[3]);
if ((block_num * MICROPY_HW_BDEV_BLOCKSIZE_EXT) >= self->len) {
ret = -MP_EFAULT; // Bad address
} else {
block_num += self->start / MICROPY_HW_BDEV_BLOCKSIZE_EXT;
ret = MICROPY_HW_BDEV_READBLOCKS_EXT(bufinfo.buf, block_num, offset, bufinfo.len);
}
}
#endif
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_flash_readblocks_obj, 3, 4, pyb_flash_readblocks);
STATIC mp_obj_t pyb_flash_writeblocks(size_t n_args, const mp_obj_t *args) {
pyb_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t block_num = mp_obj_get_int(args[1]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = -MP_EIO;
if (n_args == 3) {
// Cast self->start to signed in case it's pyb_flash_obj with negative start
block_num += FLASH_PART1_START_BLOCK + (int32_t)self->start / FLASH_BLOCK_SIZE;
ret = storage_write_blocks(bufinfo.buf, block_num, bufinfo.len / FLASH_BLOCK_SIZE);
}
#if defined(MICROPY_HW_BDEV_WRITEBLOCKS_EXT)
else if (self != &pyb_flash_obj) {
// Extended block write on a sub-section of the flash storage
uint32_t offset = mp_obj_get_int(args[3]);
if ((block_num * MICROPY_HW_BDEV_BLOCKSIZE_EXT) >= self->len) {
ret = -MP_EFAULT; // Bad address
} else {
block_num += self->start / MICROPY_HW_BDEV_BLOCKSIZE_EXT;
ret = MICROPY_HW_BDEV_WRITEBLOCKS_EXT(bufinfo.buf, block_num, offset, bufinfo.len);
}
}
#endif
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_flash_writeblocks_obj, 3, 4, pyb_flash_writeblocks);
STATIC mp_obj_t pyb_flash_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) {
2019-12-27 11:46:43 +00:00
pyb_flash_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case MP_BLOCKDEV_IOCTL_INIT: {
mp_int_t ret = 0;
storage_init();
if (mp_obj_get_int(arg_in) == 1) {
// Will be using extended block protocol
if (self == &pyb_flash_obj) {
ret = -1;
} else {
// Switch to use native block size of the underlying storage.
self->use_native_block_size = true;
}
}
return MP_OBJ_NEW_SMALL_INT(ret);
}
case MP_BLOCKDEV_IOCTL_DEINIT:
storage_flush();
return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case MP_BLOCKDEV_IOCTL_SYNC:
storage_flush();
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_BLOCK_COUNT: {
mp_int_t n;
if (self == &pyb_flash_obj) {
// Get true size
n = storage_get_block_count();
} else if (self->use_native_block_size) {
n = self->len / MICROPY_HW_BDEV_BLOCKSIZE_EXT;
} else {
n = self->len / FLASH_BLOCK_SIZE;
}
return MP_OBJ_NEW_SMALL_INT(n);
}
case MP_BLOCKDEV_IOCTL_BLOCK_SIZE: {
mp_int_t n = FLASH_BLOCK_SIZE;
if (self->use_native_block_size) {
n = MICROPY_HW_BDEV_BLOCKSIZE_EXT;
}
return MP_OBJ_NEW_SMALL_INT(n);
}
case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: {
int ret = 0;
#if defined(MICROPY_HW_BDEV_ERASEBLOCKS_EXT)
if (self->use_native_block_size) {
mp_int_t block_num = self->start / MICROPY_HW_BDEV_BLOCKSIZE_EXT + mp_obj_get_int(arg_in);
ret = MICROPY_HW_BDEV_ERASEBLOCKS_EXT(block_num, MICROPY_HW_BDEV_BLOCKSIZE_EXT);
}
#endif
return MP_OBJ_NEW_SMALL_INT(ret);
}
default:
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_ioctl_obj, pyb_flash_ioctl);
STATIC const mp_rom_map_elem_t pyb_flash_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_flash_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_flash_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_flash_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_flash_locals_dict, pyb_flash_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_flash_type,
MP_QSTR_Flash,
MP_TYPE_FLAG_NONE,
make_new, pyb_flash_make_new,
print, pyb_flash_print,
locals_dict, &pyb_flash_locals_dict
);
void pyb_flash_init_vfs(fs_user_mount_t *vfs) {
vfs->base.type = &mp_fat_vfs_type;
vfs->blockdev.flags |= MP_BLOCKDEV_FLAG_NATIVE | MP_BLOCKDEV_FLAG_HAVE_IOCTL;
vfs->fatfs.drv = vfs;
#if MICROPY_FATFS_MULTI_PARTITION
vfs->fatfs.part = 1; // flash filesystem lives on first partition
#endif
vfs->blockdev.readblocks[0] = MP_OBJ_FROM_PTR(&pyb_flash_readblocks_obj);
vfs->blockdev.readblocks[1] = MP_OBJ_FROM_PTR(&pyb_flash_obj);
vfs->blockdev.readblocks[2] = MP_OBJ_FROM_PTR(storage_read_blocks); // native version
vfs->blockdev.writeblocks[0] = MP_OBJ_FROM_PTR(&pyb_flash_writeblocks_obj);
vfs->blockdev.writeblocks[1] = MP_OBJ_FROM_PTR(&pyb_flash_obj);
vfs->blockdev.writeblocks[2] = MP_OBJ_FROM_PTR(storage_write_blocks); // native version
vfs->blockdev.u.ioctl[0] = MP_OBJ_FROM_PTR(&pyb_flash_ioctl_obj);
vfs->blockdev.u.ioctl[1] = MP_OBJ_FROM_PTR(&pyb_flash_obj);
}
#endif