kopia lustrzana https://github.com/peterhinch/micropython-samples
404 wiersze
16 KiB
Python
404 wiersze
16 KiB
Python
# sun_moon.py MicroPython Port of lunarmath.c
|
|
# Calculate sun and moon rise and set times for any date and location
|
|
|
|
# Licensing and copyright: see README.md
|
|
|
|
# Source "Astronomy on the Personal Computer" by Montenbruck and Pfleger
|
|
# ISBN 978-3-540-67221-0
|
|
|
|
# Port from C++ to MicroPython performed by Peter Hinch 2023.
|
|
# Withcontributions from Raul Kompaß and Marcus Mendenhall: see
|
|
# https://github.com/orgs/micropython/discussions/13075
|
|
# Raul Kompaß perfomed major simplification of the maths for deriving rise and
|
|
# set_times with improvements in precision with 32-bit floats.
|
|
|
|
# Moon phase now in separate module
|
|
|
|
import time
|
|
from math import sin, cos, sqrt, fabs, atan, radians, floor, pi
|
|
|
|
LAT = 53.29756504536339 # Local defaults
|
|
LONG = -2.102811634540558
|
|
|
|
# MicroPython wanton epochs:
|
|
# time.gmtime(0)[0] = 1970 or 2000 depending on platform.
|
|
# On CPython:
|
|
# (date(2000, 1, 1) - date(1970, 1, 1)).days * 24*60*60 = 946684800
|
|
# (date(2000, 1, 1) - date(1970, 1, 1)).days = 10957
|
|
|
|
# Return time now in days relative to platform epoch.
|
|
# System time is set to local time, and MP has no concept of this. Hence
|
|
# time.time() returns secs since epoch 00:00:00 local time. If lto is local time
|
|
# offset to UTC, provided -12 < lto < 12, the effect of rounding ensures the
|
|
# right number of days for platform epoch at UTC.
|
|
def now_days() -> int:
|
|
secs_per_day = 86400 # 24 * 3600
|
|
t = RiSet.mtime() # Machine time as int. Can be overridden for test.
|
|
t -= t % secs_per_day # Previous Midnight
|
|
return round(t / secs_per_day) # Days since datum
|
|
|
|
|
|
def quad(ym, yz, yp):
|
|
# See Astronomy on the PC P48-49, plus contribution from Marcus Mendenhall
|
|
# finds the parabola throuh the three points (-1,ym), (0,yz), (1, yp)
|
|
# and returns the values of x where the parabola crosses zero
|
|
# (roots of the quadratic)
|
|
# and the number of roots (0, 1 or 2) within the interval [-1, 1]
|
|
nz = 0
|
|
a = 0.5 * (ym + yp) - yz
|
|
b = 0.5 * (yp - ym)
|
|
c = yz
|
|
xe = -b / (2 * a)
|
|
ye = (a * xe + b) * xe + c
|
|
dis = b * b - 4.0 * a * c # discriminant of y=a*x^2 +bx +c
|
|
if dis > 0: # parabola has roots
|
|
if b < 0:
|
|
z2 = (-b + sqrt(dis)) / (2 * a) # z2 is larger root in magnitude
|
|
else:
|
|
z2 = (-b - sqrt(dis)) / (2 * a)
|
|
z1 = (c / a) / z2 # z1 is always closer to zero
|
|
if fabs(z1) <= 1.0:
|
|
nz += 1
|
|
if fabs(z2) <= 1.0:
|
|
nz += 1
|
|
if z1 < -1.0:
|
|
z1 = z2
|
|
return nz, z1, z2, ye
|
|
return 0, 0, 0, 0 # No roots
|
|
|
|
|
|
# **** GET MODIFIED JULIAN DATE FOR DAY RELATIVE TO TODAY ****
|
|
|
|
# Returns modified julian day number defined as mjd = jd - 2400000.5
|
|
# Deals only in integer MJD's: the JD of just after midnight will always end in 0.5
|
|
# hence the MJD of an integer day number will always be an integer
|
|
|
|
# Re platform comparisons get_mjd returns the same value regardless of
|
|
# the platform's epoch: integer days since 00:00 UTC on 17 November 1858.
|
|
def get_mjd(ndays: int = 0) -> int:
|
|
secs_per_day = 86400 # 24 * 3600
|
|
days_from_epoch = now_days() + ndays # Days since platform epoch
|
|
mjepoch = 40587 # Modified Julian date of C epoch (1 Jan 70)
|
|
if time.gmtime(0)[0] == 2000:
|
|
mjepoch += 10957
|
|
return mjepoch + days_from_epoch # Convert days from 1 Jan 70 to MJD
|
|
|
|
|
|
def frac(x):
|
|
return x % 1
|
|
|
|
|
|
# Convert rise or set time to int. These can be None (no event).
|
|
def to_int(x):
|
|
return None if x is None else round(x)
|
|
|
|
|
|
def minisun(t):
|
|
# Output sin(dec), cos(dec), ra
|
|
# returns the ra and dec of the Sun
|
|
# in decimal hours, degs referred to the equinox of date and using
|
|
# obliquity of the ecliptic at J2000.0 (small error for +- 100 yrs)
|
|
# takes t centuries since J2000.0. Claimed good to 1 arcmin
|
|
coseps = 0.9174805004
|
|
sineps = 0.397780757938
|
|
|
|
m = 2 * pi * frac(0.993133 + 99.997361 * t)
|
|
dl = 6893.0 * sin(m) + 72.0 * sin(2 * m)
|
|
l = 2 * pi * frac(0.7859453 + m / (2 * pi) + (6191.2 * t + dl) / 1296000)
|
|
sl = sin(l)
|
|
x = cos(l)
|
|
y = coseps * sl
|
|
z = sineps * sl
|
|
# rho = sqrt(1 - z * z)
|
|
# dec = (360.0 / 2 * pi) * atan(z / rho)
|
|
# ra = ((48.0 / (2 * pi)) * atan(y / (x + rho))) % 24
|
|
return x, y, z
|
|
|
|
|
|
def minimoon(t):
|
|
# takes t and returns the geocentric ra and dec
|
|
# claimed good to 5' (angle) in ra and 1' in dec
|
|
# tallies with another approximate method and with ICE for a couple of dates
|
|
arc = 206264.8062
|
|
coseps = 0.9174805004
|
|
sineps = 0.397780757938
|
|
|
|
l0 = frac(0.606433 + 1336.855225 * t) # mean longitude of moon
|
|
l = 2 * pi * frac(0.374897 + 1325.552410 * t) # mean anomaly of Moon
|
|
ls = 2 * pi * frac(0.993133 + 99.997361 * t) # mean anomaly of Sun
|
|
d = 2 * pi * frac(0.827361 + 1236.853086 * t) # difference in longitude of moon and sun
|
|
f = 2 * pi * frac(0.259086 + 1342.227825 * t) # mean argument of latitude
|
|
|
|
# corrections to mean longitude in arcsec
|
|
dl = 22640 * sin(l)
|
|
dl += -4586 * sin(l - 2 * d)
|
|
dl += +2370 * sin(2 * d)
|
|
dl += +769 * sin(2 * l)
|
|
dl += -668 * sin(ls)
|
|
dl += -412 * sin(2 * f)
|
|
dl += -212 * sin(2 * l - 2 * d)
|
|
dl += -206 * sin(l + ls - 2 * d)
|
|
dl += +192 * sin(l + 2 * d)
|
|
dl += -165 * sin(ls - 2 * d)
|
|
dl += -125 * sin(d)
|
|
dl += -110 * sin(l + ls)
|
|
dl += +148 * sin(l - ls)
|
|
dl += -55 * sin(2 * f - 2 * d)
|
|
|
|
# simplified form of the latitude terms
|
|
s = f + (dl + 412 * sin(2 * f) + 541 * sin(ls)) / arc
|
|
h = f - 2 * d
|
|
n = -526 * sin(h)
|
|
n += +44 * sin(l + h)
|
|
n += -31 * sin(-l + h)
|
|
n += -23 * sin(ls + h)
|
|
n += +11 * sin(-ls + h)
|
|
n += -25 * sin(-2 * l + f)
|
|
n += +21 * sin(-l + f)
|
|
|
|
# ecliptic long and lat of Moon in rads
|
|
l_moon = 2 * pi * frac(l0 + dl / 1296000)
|
|
b_moon = (18520.0 * sin(s) + n) / arc
|
|
|
|
# equatorial coord conversion - note fixed obliquity
|
|
cb = cos(b_moon)
|
|
x = cb * cos(l_moon)
|
|
v = cb * sin(l_moon)
|
|
w = sin(b_moon)
|
|
y = coseps * v - sineps * w
|
|
z = sineps * v + coseps * w
|
|
# rho = sqrt(1.0 - z * z)
|
|
# dec = (360.0 / 2 * pi) * atan(z / rho)
|
|
# ra = ((48.0 / (2 * pi)) * atan(y / (x + rho))) % 24
|
|
return x, y, z
|
|
|
|
|
|
class RiSet:
|
|
verbose = True
|
|
# Riset.mtime() returns machine time as an int. The class variable tim is for
|
|
# test purposes only and allows the hardware clock to be overridden
|
|
tim = None
|
|
|
|
@classmethod
|
|
def mtime(cls):
|
|
return round(time.time()) if cls.tim is None else cls.tim
|
|
|
|
@classmethod
|
|
def set_time(cls, t): # Given time from Unix epoch set time
|
|
if time.gmtime(0)[0] == 2000: # Machine epoch
|
|
t -= 10957 * 86400
|
|
cls.tim = t
|
|
|
|
def __init__(self, lat=LAT, long=LONG, lto=0, tl=None, dst=lambda x: x): # Local defaults
|
|
self.sglat = sin(radians(lat))
|
|
self.cglat = cos(radians(lat))
|
|
self.long = long
|
|
self.check_lto(lto) # -15 < lto < 15
|
|
self.lto = round(lto * 3600) # Localtime offset in secs
|
|
self.tlight = sin(radians(tl)) if tl is not None else tl
|
|
self.dst = dst
|
|
self.mjd = None # Current integer MJD
|
|
# Times in integer secs from midnight on current day (in machine time adjusted for DST)
|
|
# [sunrise, sunset, moonrise, moonset, cvend, cvstart]
|
|
self._times = [None] * 6
|
|
self.set_day() # Initialise to today's date
|
|
if RiSet.verbose:
|
|
t = time.localtime()
|
|
print(f"Machine time: {t[2]:02}/{t[1]:02}/{t[0]:4} {t[3]:02}:{t[4]:02}:{t[5]:02}")
|
|
RiSet.verbose = False
|
|
|
|
# ***** API start *****
|
|
# Examine Julian dates either side of current one to cope with localtime.
|
|
# 707μs on RP2040 at standard clock and with local time == UTC
|
|
def set_day(self, day: int = 0):
|
|
mjd = get_mjd(day)
|
|
if self.mjd is None or self.mjd != mjd:
|
|
spd = 86400 # Secs per day
|
|
# ._t0 is time of midnight (local time) in secs since MicroPython epoch
|
|
# time.time() assumes MicroPython clock is set to geographic local time
|
|
self._t0 = ((self.mtime() + day * spd) // spd) * spd
|
|
self.update(mjd) # Recalculate rise and set times
|
|
return self # Allow r.set_day().sunrise()
|
|
|
|
# variants: 0 secs since 00:00:00 localtime. 1 secs since MicroPython epoch
|
|
# (relies on system being set to localtime). 2 human-readable text.
|
|
def sunrise(self, variant: int = 0):
|
|
return self._format(self._times[0], variant)
|
|
|
|
def sunset(self, variant: int = 0):
|
|
return self._format(self._times[1], variant)
|
|
|
|
def moonrise(self, variant: int = 0):
|
|
return self._format(self._times[2], variant)
|
|
|
|
def moonset(self, variant: int = 0):
|
|
return self._format(self._times[3], variant)
|
|
|
|
def tstart(self, variant: int = 0):
|
|
return self._format(self._times[4], variant)
|
|
|
|
def tend(self, variant: int = 0):
|
|
return self._format(self._times[5], variant)
|
|
|
|
def set_lto(self, t): # Update the offset from UTC
|
|
self.check_lto(t) # No need to recalc beause date is unchanged
|
|
self.lto = round(t * 3600) # Localtime offset in secs
|
|
|
|
def has_risen(self, sun: bool):
|
|
return self.has_x(True, sun)
|
|
|
|
def has_set(self, sun: bool):
|
|
return self.has_x(False, sun)
|
|
|
|
# Return current state of sun or moon. The moon has a special case where it
|
|
# rises and sets in a 24 hour period. If its state is queried after both these
|
|
# events or before either has occurred, the current state depends on the order
|
|
# in which they occurred (the sun always sets afer it rises).
|
|
# The case is (.has_risen(False) and .has_set(False)) and if it occurs then
|
|
# .moonrise() and .moonset() must return valid times (not None).
|
|
def is_up(self, sun: bool):
|
|
hr = self.has_risen(sun)
|
|
hs = self.has_set(sun)
|
|
rt = self.sunrise() if sun else self.moonrise()
|
|
st = self.sunset() if sun else self.moonset()
|
|
if rt is None and st is None: # No event in 24hr period.
|
|
return self.above_horizon(sun)
|
|
# Handle special case: moon has already risen and set or moon has neither
|
|
# risen nor set, yet there is a rise and set event in the day
|
|
if not (hr ^ hs):
|
|
if not ((rt is None) or (st is None)):
|
|
return rt > st
|
|
if not (hr or hs): # No event has yet occurred
|
|
return rt is None
|
|
|
|
return hr and not hs # Default case: up if it's risen but not set
|
|
|
|
# ***** API end *****
|
|
|
|
# Generic has_risen/has_set function
|
|
def has_x(self, risen: bool, sun: bool):
|
|
if risen:
|
|
st = self.sunrise(1) if sun else self.moonrise(1) # DST- adjusted machine time
|
|
else:
|
|
st = self.sunset(1) if sun else self.moonset(1)
|
|
if st is not None:
|
|
return st < self.dst(self.mtime()) # Machine time
|
|
return False
|
|
|
|
def above_horizon(self, sun: bool):
|
|
now = self.mtime() + self.lto # UTC
|
|
tutc = (now % 86400) / 3600 # Time as UTC hour of day (float)
|
|
return self.sin_alt(tutc, sun) > 0 # Object is above horizon
|
|
|
|
# Re-calculate rise and set times
|
|
def update(self, mjd):
|
|
for x in range(len(self._times)):
|
|
self._times[x] = None # Assume failure
|
|
days = (1, 2) if self.lto < 0 else (1,) if self.lto == 0 else (0, 1)
|
|
tr = None # Assume no twilight calculations
|
|
ts = None
|
|
for day in days:
|
|
self.mjd = mjd + day - 1
|
|
sr, ss = self.rise_set(True, False) # Sun
|
|
# Twilight: only calculate if required
|
|
if self.tlight is not None:
|
|
tr, ts = self.rise_set(True, True)
|
|
mr, ms = self.rise_set(False, False) # Moon
|
|
# Adjust for local time and DST. Store in ._times if value is in
|
|
# 24-hour local time window
|
|
self.adjust((sr, ss, mr, ms, tr, ts), day)
|
|
self.mjd = mjd
|
|
|
|
def adjust(self, times, day):
|
|
for idx, n in enumerate(times):
|
|
if n is not None:
|
|
n += self.lto + (day - 1) * 86400
|
|
n = self.dst(n) # Adjust for DST on day of n
|
|
h = n // 3600
|
|
if 0 <= h < 24:
|
|
self._times[idx] = n
|
|
|
|
def _format(self, n, variant):
|
|
if (n is not None) and (variant & 4): # Machine clock set to UTC
|
|
variant &= 0x03
|
|
n = self.dst(n + self._t0) - self._t0
|
|
if variant == 0: # Default: secs since Midnight (local time)
|
|
return n
|
|
elif variant == 1: # Secs since epoch of MicroPython platform
|
|
return None if n is None else n + self._t0
|
|
# variant == 2
|
|
if n is None:
|
|
return "--:--:--"
|
|
else:
|
|
hr, tmp = divmod(n, 3600)
|
|
mi, sec = divmod(tmp, 60)
|
|
return f"{hr:02d}:{mi:02d}:{sec:02d}"
|
|
|
|
def check_lto(self, t):
|
|
if not -15 < t < 15:
|
|
raise ValueError("Invalid local time offset.")
|
|
|
|
# See https://github.com/orgs/micropython/discussions/13075
|
|
def lstt(self, t, h):
|
|
# Takes the mjd and the longitude (west negative) and then returns
|
|
# the local sidereal time in degrees. Im using Meeus formula 11.4
|
|
# instead of messing about with UTo and so on
|
|
# modified to use the pre-computed 't' value from sin_alt
|
|
d = t * 36525
|
|
df = frac(0.5 + h / 24)
|
|
c1 = 360
|
|
c2 = 0.98564736629
|
|
dsum = c1 * df + c2 * d # dsum is still ~ 9000 on average, losing precision
|
|
lst = 280.46061837 + dsum + t * t * (0.000387933 - t / 38710000)
|
|
return lst
|
|
|
|
def sin_alt(self, hour, sun):
|
|
# Returns the sine of the altitude of the object (moon or sun)
|
|
# at an hour relative to the current date (mjd)
|
|
func = minisun if sun else minimoon
|
|
mjd = (self.mjd - 51544.5) + hour / 24.0
|
|
# mjd = self.mjd + hour / 24.0
|
|
t = mjd / 36525.0
|
|
x, y, z = func(t)
|
|
tl = self.lstt(t, hour) + self.long # Local mean sidereal time adjusted for logitude
|
|
return self.sglat * z + self.cglat * (x * cos(radians(tl)) + y * sin(radians(tl)))
|
|
|
|
# Calculate rise and set times of sun or moon for the current MJD. Times are
|
|
# relative to that 24 hour period.
|
|
def rise_set(self, sun, tl):
|
|
t_rise = None # Rise and set times in secs from midnight
|
|
t_set = None
|
|
if tl:
|
|
sinho = -self.tlight
|
|
else:
|
|
sinho = sin(radians(-0.833)) if sun else sin(radians(8 / 60))
|
|
# moonrise taken as centre of moon at +8 arcmin
|
|
# sunset upper limb simple refraction
|
|
# The loop finds the sin(alt) for sets of three consecutive
|
|
# hours, and then tests for a single zero crossing in the interval
|
|
# or for two zero crossings in an interval for for a grazing event
|
|
yp = self.sin_alt(0, sun) - sinho
|
|
for hour in range(1, 24, 2):
|
|
ym = yp
|
|
yz = self.sin_alt(hour, sun) - sinho
|
|
yp = self.sin_alt(hour + 1, sun) - sinho
|
|
nz, z1, z2, ye = quad(ym, yz, yp) # Find horizon crossings
|
|
if nz == 1: # One crossing found
|
|
if ym < 0.0:
|
|
t_rise = 3600 * (hour + z1)
|
|
else:
|
|
t_set = 3600 * (hour + z1)
|
|
# case where two events are found in this interval
|
|
# (rare but whole reason we are not using simple iteration)
|
|
elif nz == 2:
|
|
if ye < 0.0:
|
|
t_rise = 3600 * (hour + z2)
|
|
t_set = 3600 * (hour + z1)
|
|
else:
|
|
t_rise = 3600 * (hour + z1)
|
|
t_set = 3600 * (hour + z2)
|
|
|
|
if t_rise is not None and t_set is not None:
|
|
break # All done
|
|
return to_int(t_rise), to_int(t_set) # Convert to int preserving None values
|