kopia lustrzana https://github.com/peterhinch/micropython-samples
Add astronomy/sun_moon.py.
rodzic
56b06d26e9
commit
e65b15fd6d
|
@ -0,0 +1,311 @@
|
||||||
|
# sun_moon.py MicroPython Port of lunarmath.c
|
||||||
|
# Calculate sun and moon rise and set times for any date and location
|
||||||
|
|
||||||
|
# Copyright (c) 2023 Peter Hinch
|
||||||
|
# Released under the MIT License (MIT) - see LICENSE file
|
||||||
|
|
||||||
|
# Source "Astronomy on the Personal Computer" by Montenbruck and Pfleger
|
||||||
|
# ISBN 978-3-540-67221-0
|
||||||
|
|
||||||
|
import time
|
||||||
|
from math import sin, cos, sqrt, fabs, atan, radians, floor
|
||||||
|
|
||||||
|
LAT = 53.29756504536339 # Local defaults
|
||||||
|
LONG = -2.102811634540558
|
||||||
|
MOON_PHASE_LENGTH = 29.530588853
|
||||||
|
|
||||||
|
|
||||||
|
def quad(ym, yz, yp):
|
||||||
|
# See Astronomy on the PC P48-49
|
||||||
|
# finds the parabola throuh the three points (-1,ym), (0,yz), (1, yp)
|
||||||
|
# and returns the values of x where the parabola crosses zero
|
||||||
|
# (roots of the quadratic)
|
||||||
|
# and the number of roots (0, 1 or 2) within the interval [-1, 1]
|
||||||
|
nz = 0
|
||||||
|
a = 0.5 * (ym + yp) - yz
|
||||||
|
b = 0.5 * (yp - ym)
|
||||||
|
c = yz
|
||||||
|
xe = -b / (2 * a)
|
||||||
|
ye = (a * xe + b) * xe + c
|
||||||
|
dis = b * b - 4.0 * a * c # discriminant of y=a*x^2 +bx +c
|
||||||
|
if dis > 0: # parabola has roots
|
||||||
|
dx = 0.5 * sqrt(dis) / fabs(a)
|
||||||
|
z1 = xe - dx
|
||||||
|
z2 = xe + dx
|
||||||
|
if fabs(z1) <= 1.0:
|
||||||
|
nz += 1
|
||||||
|
if fabs(z2) <= 1.0:
|
||||||
|
nz += 1
|
||||||
|
if z1 < -1.0:
|
||||||
|
z1 = z2
|
||||||
|
return nz, z1, z2, ye
|
||||||
|
|
||||||
|
|
||||||
|
# **** GET MODIFIED JULIAN DATE FOR DAY RELATIVE TO TODAY ****
|
||||||
|
|
||||||
|
# Takes the system time in seconds from 1 Jan 70 & returns
|
||||||
|
# modified julian day number defined as mjd = jd - 2400000.5
|
||||||
|
# Deals only in integer MJD's: the JD of just after midnight will always end in 0.5
|
||||||
|
# hence the MJD of an integer day number will always be an integer
|
||||||
|
|
||||||
|
# MicroPython wanton epochs:
|
||||||
|
# time.gmtime(0)[0] = 1970 or 2000 depending on platform.
|
||||||
|
# (date(2000, 1, 1) - date(1970, 1, 1)).days * 24*60*60 = 946684800
|
||||||
|
# (date(2000, 1, 1) - date(1970, 1, 1)).days = 10957
|
||||||
|
|
||||||
|
# Re platform comparisons get_mjd does integer arithmetic and returns the same
|
||||||
|
# value regardless of the platform's epoch
|
||||||
|
def get_mjd(ndays: int = 0) -> int: # Days offset from today
|
||||||
|
secs_per_day = 86400 # 24 * 3600
|
||||||
|
tsecs = time.time() # Time now in secs since epoch
|
||||||
|
tsecs -= tsecs % secs_per_day # Time last midnight
|
||||||
|
tsecs += secs_per_day * ndays # Specified day
|
||||||
|
days_from_epoch = round(tsecs / secs_per_day) # Days from 1 Jan 70
|
||||||
|
# tsecs += secs_per_day # 2 # Noon
|
||||||
|
mjepoch = 40587 # Modified Julian date of C epoch (1 Jan 70)
|
||||||
|
if time.gmtime(0)[0] == 2000:
|
||||||
|
mjepoch += 10957
|
||||||
|
return mjepoch + days_from_epoch # Convert days from 1 Jan 70 to MJD
|
||||||
|
|
||||||
|
|
||||||
|
def frac(x):
|
||||||
|
return x % 1
|
||||||
|
|
||||||
|
|
||||||
|
# Convert rise or set time to int. These can be None (no event).
|
||||||
|
def to_int(x):
|
||||||
|
return None if x is None else round(x)
|
||||||
|
|
||||||
|
|
||||||
|
# Approximate moon phase in range 0.0..1.0 0.0 is new moon, 0.5 full moon
|
||||||
|
def moonphase(year, month, day, hour):
|
||||||
|
fty = year - floor((12.0 - month) / 10.0)
|
||||||
|
itm = month + 9
|
||||||
|
if itm >= 12:
|
||||||
|
itm -= 12
|
||||||
|
term1 = floor(365.25 * (fty + 4712))
|
||||||
|
term2 = floor(30.6 * itm + 0.5)
|
||||||
|
term3 = floor(floor((fty / 100) + 49) * 0.75) - 38
|
||||||
|
tmp = term1 + term2 + day + 59 + hour / 24.0
|
||||||
|
if tmp > 2299160.0:
|
||||||
|
tmp = tmp - term3
|
||||||
|
phi = (tmp - 2451550.1) / MOON_PHASE_LENGTH
|
||||||
|
return phi % 1
|
||||||
|
|
||||||
|
|
||||||
|
def minisun(t):
|
||||||
|
# Output dec, ra
|
||||||
|
# returns the ra and dec of the Sun
|
||||||
|
# in decimal hours, degs referred to the equinox of date and using
|
||||||
|
# obliquity of the ecliptic at J2000.0 (small error for +- 100 yrs)
|
||||||
|
# takes t centuries since J2000.0. Claimed good to 1 arcmin
|
||||||
|
p2 = 6.283185307
|
||||||
|
coseps = 0.91748
|
||||||
|
sineps = 0.39778
|
||||||
|
|
||||||
|
M = p2 * frac(0.993133 + 99.997361 * t)
|
||||||
|
DL = 6893.0 * sin(M) + 72.0 * sin(2 * M)
|
||||||
|
L = p2 * frac(0.7859453 + M / p2 + (6191.2 * t + DL) / 1296000)
|
||||||
|
SL = sin(L)
|
||||||
|
X = cos(L)
|
||||||
|
Y = coseps * SL
|
||||||
|
Z = sineps * SL
|
||||||
|
RHO = sqrt(1 - Z * Z)
|
||||||
|
dec = (360.0 / p2) * atan(Z / RHO)
|
||||||
|
ra = (48.0 / p2) * atan(Y / (X + RHO))
|
||||||
|
if ra < 0:
|
||||||
|
ra += 24
|
||||||
|
return dec, ra
|
||||||
|
|
||||||
|
|
||||||
|
def minimoon(t):
|
||||||
|
# takes t and returns the geocentric ra and dec
|
||||||
|
# claimed good to 5' (angle) in ra and 1' in dec
|
||||||
|
# tallies with another approximate method and with ICE for a couple of dates
|
||||||
|
|
||||||
|
p2 = 6.283185307
|
||||||
|
arc = 206264.8062
|
||||||
|
coseps = 0.91748
|
||||||
|
sineps = 0.39778
|
||||||
|
|
||||||
|
L0 = frac(0.606433 + 1336.855225 * t) # mean longitude of moon
|
||||||
|
L = p2 * frac(0.374897 + 1325.552410 * t) # mean anomaly of Moon
|
||||||
|
LS = p2 * frac(0.993133 + 99.997361 * t) # mean anomaly of Sun
|
||||||
|
D = p2 * frac(0.827361 + 1236.853086 * t) # difference in longitude of moon and sun
|
||||||
|
F = p2 * frac(0.259086 + 1342.227825 * t) # mean argument of latitude
|
||||||
|
|
||||||
|
# corrections to mean longitude in arcsec
|
||||||
|
DL = 22640 * sin(L)
|
||||||
|
DL += -4586 * sin(L - 2 * D)
|
||||||
|
DL += +2370 * sin(2 * D)
|
||||||
|
DL += +769 * sin(2 * L)
|
||||||
|
DL += -668 * sin(LS)
|
||||||
|
DL += -412 * sin(2 * F)
|
||||||
|
DL += -212 * sin(2 * L - 2 * D)
|
||||||
|
DL += -206 * sin(L + LS - 2 * D)
|
||||||
|
DL += +192 * sin(L + 2 * D)
|
||||||
|
DL += -165 * sin(LS - 2 * D)
|
||||||
|
DL += -125 * sin(D)
|
||||||
|
DL += -110 * sin(L + LS)
|
||||||
|
DL += +148 * sin(L - LS)
|
||||||
|
DL += -55 * sin(2 * F - 2 * D)
|
||||||
|
|
||||||
|
# simplified form of the latitude terms
|
||||||
|
S = F + (DL + 412 * sin(2 * F) + 541 * sin(LS)) / arc
|
||||||
|
H = F - 2 * D
|
||||||
|
N = -526 * sin(H)
|
||||||
|
N += +44 * sin(L + H)
|
||||||
|
N += -31 * sin(-L + H)
|
||||||
|
N += -23 * sin(LS + H)
|
||||||
|
N += +11 * sin(-LS + H)
|
||||||
|
N += -25 * sin(-2 * L + F)
|
||||||
|
N += +21 * sin(-L + F)
|
||||||
|
|
||||||
|
# ecliptic long and lat of Moon in rads
|
||||||
|
L_moon = p2 * frac(L0 + DL / 1296000)
|
||||||
|
B_moon = (18520.0 * sin(S) + N) / arc
|
||||||
|
|
||||||
|
# equatorial coord conversion - note fixed obliquity
|
||||||
|
CB = cos(B_moon)
|
||||||
|
X = CB * cos(L_moon)
|
||||||
|
V = CB * sin(L_moon)
|
||||||
|
W = sin(B_moon)
|
||||||
|
Y = coseps * V - sineps * W
|
||||||
|
Z = sineps * V + coseps * W
|
||||||
|
RHO = sqrt(1.0 - Z * Z)
|
||||||
|
dec = (360.0 / p2) * atan(Z / RHO)
|
||||||
|
ra = (48.0 / p2) * atan(Y / (X + RHO))
|
||||||
|
if ra < 0:
|
||||||
|
ra += 24
|
||||||
|
return dec, ra
|
||||||
|
|
||||||
|
|
||||||
|
class RiSet:
|
||||||
|
def __init__(self, lat=LAT, long=LONG): # Local defaults
|
||||||
|
self.sglat = sin(radians(lat))
|
||||||
|
self.cglat = cos(radians(lat))
|
||||||
|
self.long = long
|
||||||
|
self.mjd = None # Current integer MJD
|
||||||
|
# Times in integer secs from midnight on current day
|
||||||
|
self._sr = None # Sunrise
|
||||||
|
self._ss = None # Sunset
|
||||||
|
self._mr = None # Moonrise
|
||||||
|
self._ms = None # Moon set
|
||||||
|
self.set_day() # Initialise to today's date
|
||||||
|
|
||||||
|
# ***** API start *****
|
||||||
|
# 109μs on PBD-SF2W 166μs on ESP32-S3 394μs on RP2 (standard clocks)
|
||||||
|
def set_day(self, day=0):
|
||||||
|
mjd = get_mjd(day)
|
||||||
|
if self.mjd is None or self.mjd != mjd:
|
||||||
|
spd = 86400 # Secs per day
|
||||||
|
self._t0 = ((round(time.time()) + day * spd) // spd) * spd # Midnight on target day
|
||||||
|
self.mjd = mjd
|
||||||
|
self._sr, self._ss = self.rise_set(True) # Sun
|
||||||
|
self._mr, self._ms = self.rise_set(False) # Moon
|
||||||
|
t = time.gmtime(time.time() + day * 86400)
|
||||||
|
self._phase = moonphase(*t[:4])
|
||||||
|
|
||||||
|
def sunrise(self, to=0):
|
||||||
|
return self._format(self._sr, to)
|
||||||
|
|
||||||
|
def sunset(self, to=0):
|
||||||
|
return self._format(self._ss, to)
|
||||||
|
|
||||||
|
def moonrise(self, to=0):
|
||||||
|
return self._format(self._mr, to)
|
||||||
|
|
||||||
|
def moonset(self, to=0):
|
||||||
|
return self._format(self._ms, to)
|
||||||
|
|
||||||
|
def moonphase(self):
|
||||||
|
return self._phase
|
||||||
|
|
||||||
|
# ***** API end *****
|
||||||
|
def _format(self, n, to):
|
||||||
|
if to == 0: # Default: secs since Midnight
|
||||||
|
return n
|
||||||
|
elif to == 1: # Secs since epoch
|
||||||
|
return None if n is None else n + self._t0
|
||||||
|
# to == 3
|
||||||
|
if n is None:
|
||||||
|
return "--:--:--"
|
||||||
|
else:
|
||||||
|
hr, tmp = divmod(n, 3600)
|
||||||
|
mi, sec = divmod(tmp, 60)
|
||||||
|
return f"{hr:02d}:{mi:02d}:{sec:02d}"
|
||||||
|
|
||||||
|
def lmst(self, mjd):
|
||||||
|
# Takes the mjd and the longitude (west negative) and then returns
|
||||||
|
# the local sidereal time in hours. Im using Meeus formula 11.4
|
||||||
|
# instead of messing about with UTo and so on
|
||||||
|
d = mjd - 51544.5
|
||||||
|
t = d / 36525.0
|
||||||
|
lst = 280.46061837 + 360.98564736629 * d + 0.000387933 * t * t - t * t * t / 38710000
|
||||||
|
return (lst % 360) / 15.0 + self.long / 15
|
||||||
|
|
||||||
|
def sin_alt(self, hour, func):
|
||||||
|
# Returns the sine of the altitude of the object (moon or sun)
|
||||||
|
# at an hour relative to the current date (mjd)
|
||||||
|
mjd = self.mjd + hour / 24.0
|
||||||
|
t = (mjd - 51544.5) / 36525.0
|
||||||
|
dec, ra = func(t)
|
||||||
|
# hour angle of object: one hour = 15 degrees. Note lmst() uses longitude
|
||||||
|
tau = 15.0 * (self.lmst(mjd) - ra)
|
||||||
|
# sin(alt) of object using the conversion formulas
|
||||||
|
salt = self.sglat * sin(radians(dec)) + self.cglat * cos(radians(dec)) * cos(radians(tau))
|
||||||
|
return salt
|
||||||
|
|
||||||
|
# Modified to find sunrise and sunset only, not twilight events.
|
||||||
|
def rise_set(self, sun):
|
||||||
|
# this is my attempt to encapsulate most of the program in a function
|
||||||
|
# then this function can be generalised to find all the Sun events.
|
||||||
|
t_rise = None # Rise and set times in secs from midnight
|
||||||
|
t_set = None
|
||||||
|
sinho = sin(radians(-0.833)) if sun else sin(radians(8 / 60))
|
||||||
|
# moonrise taken as centre of moon at +8 arcmin
|
||||||
|
# sunset upper limb simple refraction
|
||||||
|
# The loop finds the sin(alt) for sets of three consecutive
|
||||||
|
# hours, and then tests for a single zero crossing in the interval
|
||||||
|
# or for two zero crossings in an interval for for a grazing event
|
||||||
|
func = minisun if sun else minimoon
|
||||||
|
yp = self.sin_alt(0, func) - sinho
|
||||||
|
for hour in range(1, 24, 2):
|
||||||
|
ym = yp
|
||||||
|
yz = self.sin_alt(hour, func) - sinho
|
||||||
|
yp = self.sin_alt(hour + 1, func) - sinho
|
||||||
|
nz, z1, z2, ye = quad(ym, yz, yp) # Find horizon crossings
|
||||||
|
if nz == 1: # One crossing found
|
||||||
|
if ym < 0.0:
|
||||||
|
t_rise = 3600 * (hour + z1)
|
||||||
|
else:
|
||||||
|
t_set = 3600 * (hour + z1)
|
||||||
|
# case where two events are found in this interval
|
||||||
|
# (rare but whole reason we are not using simple iteration)
|
||||||
|
elif nz == 2:
|
||||||
|
if ye < 0.0:
|
||||||
|
t_rise = 3600 * (hour + z2)
|
||||||
|
t_set = 3600 * (hour + z1)
|
||||||
|
else:
|
||||||
|
t_rise = 3600 * (hour + z1)
|
||||||
|
t_set = 3600 * (hour + z2)
|
||||||
|
|
||||||
|
if t_rise is not None and t_set is not None:
|
||||||
|
break # All done
|
||||||
|
return to_int(t_rise), to_int(t_set) # Convert to int preserving None values
|
||||||
|
|
||||||
|
|
||||||
|
r = RiSet()
|
||||||
|
t = time.ticks_us()
|
||||||
|
r.set_day()
|
||||||
|
print("Elapsed us", time.ticks_diff(time.ticks_us(), t))
|
||||||
|
for d in range(7):
|
||||||
|
print(f"Day {d}")
|
||||||
|
r.set_day(d)
|
||||||
|
print(f"Sun rise {r.sunrise(3)} set {r.sunset(3)}")
|
||||||
|
print(f"Moon rise {r.moonrise(3)} set {r.moonset(3)}")
|
||||||
|
|
||||||
|
print(r.sunrise(1))
|
||||||
|
for d in range(30):
|
||||||
|
r.set_day(d)
|
||||||
|
print(round(r.moonphase() * 1000))
|
Ładowanie…
Reference in New Issue