kopia lustrzana https://github.com/peterhinch/micropython-samples
Update phase to match official docs.
rodzic
7bcf1e6703
commit
bc99009704
|
@ -69,7 +69,7 @@ pull definition to provide a pull up or pull down as required.
|
|||
|
||||
The `encoder.portable.py` version should work on all MicroPython platforms.
|
||||
Tested on ESP8266. Note that interrupt latency on the ESP8266 limits
|
||||
performance. ESP32 is similar.
|
||||
performance. ESP32 has similar limitations.
|
||||
|
||||
# A pseudo random number generator
|
||||
|
||||
|
@ -107,7 +107,7 @@ Linux installation and having to compile the Unix build of MicroPython.
|
|||
# Measurement of relative timing and phase of fast analog signals
|
||||
|
||||
This describes ways of using the Pyboard to perform precision measurements of
|
||||
analog signals of up to around 36KHz. It is documented [here](./phase/README.md).
|
||||
analog signals of up to around 50KHz. It is documented [here](./phase/README.md).
|
||||
|
||||
# A design for a hardware power meter
|
||||
|
||||
|
|
113
phase/README.md
113
phase/README.md
|
@ -1,92 +1,41 @@
|
|||
# Measurement of relative timing and phase of fast analog signals
|
||||
# 1. Introduction
|
||||
|
||||
The principal purpose of this application note is to describe a technique for
|
||||
measuring the relative phase of a pair of sinsusoidal signals over the full
|
||||
range of 2π radians (360°). This is known as quadrature detection; while
|
||||
ancient history to radio engineers the method may be unfamiliar to those from
|
||||
a programming background.
|
||||
|
||||
## 1.1 Measurement of relative timing and phase of analog signals
|
||||
|
||||
As of 11th April 2018 the Pyboard firmware has been enhanced to enable multiple
|
||||
ADC channels to be read in a similar way to the existing `read_timed` method.
|
||||
At each timer tick a reading is taken from each ADC in very quick succession.
|
||||
This enables the relative timing or phase of relatively fast signals to be
|
||||
measured.
|
||||
ADC channels to be read in response to a timer tick. At each tick a reading is
|
||||
taken from each ADC in quick succession. This enables the relative timing or
|
||||
phase of signals to be measured. This is facilitated by the static method
|
||||
`ADC.read_timed_multi` which is documented
|
||||
[here](http://docs.micropython.org/en/latest/pyboard/library/pyb.ADC.html).
|
||||
|
||||
The ability to perform such measurements substantially increases the potential
|
||||
application areas of the Pyboard, supporting precision measurements of signals
|
||||
into the ultrasonic range. Applications such as ultrasonic rangefinders come to
|
||||
mind. With two or more microphones it may be feasible to produce an ultrasonic
|
||||
active sonar capable of providing directional and distance information for
|
||||
multiple targets.
|
||||
into the ultrasonic range. Applications such as ultrasonic rangefinders may be
|
||||
practicable. With two or more microphones it may be feasible to produce an
|
||||
ultrasonic active sonar capable of providing directional and distance
|
||||
information for multiple targets.
|
||||
|
||||
I have used it to build an electrical network analyser which yields accurate
|
||||
gain and phase plots of signals up to 36KHz.
|
||||
|
||||
# 1. Staticmethod ADC.read_timed_multi
|
||||
|
||||
The following is based on the documentation changes in the above PR.
|
||||
|
||||
Call pattern:
|
||||
```python
|
||||
from pyb import ADC
|
||||
ok = ADC.read_timed_multi((adcx, adcy, ...), (bufx, bufy, ...), timer)
|
||||
```
|
||||
|
||||
This is a static method. It can be used to extract relative timing or phase
|
||||
data from multiple ADC's.
|
||||
|
||||
It reads analog values from multiple ADCs into buffers at a rate set by the
|
||||
`timer` object. Each time the timer triggers a sample is rapidly read from each
|
||||
ADC in turn.
|
||||
|
||||
ADC and buffer instances are passed in tuples with each ADC having an
|
||||
associated buffer. All buffers must be of the same type and length and the
|
||||
number of buffers must equal the number of ADC's.
|
||||
|
||||
Buffers must be `bytearray` or `array.array` instances. The ADC values have
|
||||
12-bit resolution and are stored directly into the buffer if its element size
|
||||
is 16 bits or greater. If buffers have only 8-bit elements (i.e. a bytearray)
|
||||
then the sample resolution will be reduced to 8 bits.
|
||||
|
||||
`timer` must be a Timer object. The timer must already be initialised and
|
||||
running at the desired sampling frequency.
|
||||
|
||||
Example reading 3 ADC's:
|
||||
|
||||
```python
|
||||
import pyb
|
||||
import array
|
||||
adc0 = pyb.ADC(pyb.Pin.board.X1) # Create ADC's
|
||||
adc1 = pyb.ADC(pyb.Pin.board.X2)
|
||||
adc2 = pyb.ADC(pyb.Pin.board.X3)
|
||||
tim = pyb.Timer(8, freq=100) # Create timer
|
||||
rx0 = array.array('H', (0 for i in range(100))) # ADC buffers of
|
||||
rx1 = array.array('H', (0 for i in range(100))) # 100 16-bit words
|
||||
rx2 = array.array('H', (0 for i in range(100)))
|
||||
# read analog values into buffers at 100Hz (takes one second)
|
||||
pyb.ADC.read_timed_multi((adc0, adc1, adc2), (rx0, rx1, rx2), tim)
|
||||
for n in range(len(rx0)):
|
||||
print(rx0[n], rx1[n], rx2[n])
|
||||
```
|
||||
|
||||
This function does not allocate any memory. It has blocking behaviour: it does
|
||||
not return to the calling program until the buffers are full.
|
||||
|
||||
The function returns `True` if all samples were acquired with correct timing.
|
||||
At high sample rates the time taken to acquire a set of samples can exceed the
|
||||
timer period. In this case the function returns `False`, indicating a loss of
|
||||
precision in the sample interval. In extreme cases samples may be missed.
|
||||
|
||||
The maximum rate depends on factors including the data width and the number of
|
||||
ADC's being read. In testing two ADC's were sampled at 12 bit precision and at
|
||||
a timer rate of 210KHz without overrun. At high sample rates disabling
|
||||
interrupts for the duration can reduce the risk of sporadic data loss.
|
||||
gain and phase (+-5°) plots of signals up to 40KHz.
|
||||
|
||||
# 2 Applications
|
||||
|
||||
## 2.1 Measurements of relative timing
|
||||
|
||||
In practice `ADC.read_timed_multi` reads each ADC in turn. This implies a delay
|
||||
between each reading. This was measured at 3.236μs on a Pyboard V1.1 and can be
|
||||
used to compensate any measurements taken.
|
||||
between each reading. This was measured at 3.24μs on a Pyboard V1.1. The
|
||||
measured value can be used to compensate any readings taken.
|
||||
|
||||
## 2.2 Phase measurements
|
||||
|
||||
### 2.2.1 The phase sensitive detector
|
||||
### 2.2.1 The quadrature detector
|
||||
|
||||
The principle of a phase sensitive detector (applicable to linear and sampled
|
||||
data systems) is based on multiplying the two signals and low pass filtering
|
||||
|
@ -107,12 +56,12 @@ phase of the two signals. The second is an AC component at twice the incoming
|
|||
frequency. So if the product signal is passed through a low pass filter the
|
||||
right hand term disappears leaving only 0.5cos(-ϕ).
|
||||
|
||||
Where the frequency is known ideal filtering may be achieved simply, by
|
||||
averaging over an integer number of cycles.
|
||||
Where the frequency is known the filtering may be achieved simply by averaging
|
||||
over an integer number of cycles.
|
||||
|
||||
For the above to produce accurate phase measurements the amplitudes of the two
|
||||
signals must be normalised to 1. Alternatively the amplitudes should be
|
||||
measured and the resultant DC value divided by their product.
|
||||
signals must be normalised to 1. Alternatively the amplitudes may be measured
|
||||
and the DC phase value divided by their product.
|
||||
|
||||
Because cos ϕ = cos -ϕ this can only detect phase angles over a range of π
|
||||
radians. To achieve detection over the full 2π range a second product detector
|
||||
|
@ -150,11 +99,12 @@ accurately measure the phase difference between an outgoing sinewave produced
|
|||
by `DAC.write_timed` and an incoming response signal. For application reasons
|
||||
`DAC.write_timed` runs continuously. Its output feeds one ADC and the incoming
|
||||
signal feeds another. The ADC's are fed from matched hardware anti-aliasing
|
||||
filters.
|
||||
filters; the matched characteristic ensures that any phase shift in the filters
|
||||
cancels out.
|
||||
|
||||
Because the frequency is known the ADC sampling rate is chosen so that an
|
||||
integer number of cycles are captured. This enables simple averaging to be used
|
||||
to remove the double frequency component.
|
||||
integer number of cycles are captured. Thus averaging is used to remove the
|
||||
double frequency component.
|
||||
|
||||
The function `demod()` returns the phase difference in radians. The sample
|
||||
arrays are globals `bufout` and `bufin`. The `freq` arg is the frequency and is
|
||||
|
@ -199,6 +149,7 @@ def demod(freq, nsamples):
|
|||
sum_quad /= (buflen * 0.5)
|
||||
c = sum_norm + 1j * sum_quad # Create the complex phasor
|
||||
# Apply phase compensation measured at 3.236μs
|
||||
c *= 1 - 2j * pi * freq * 3.236e-6 # very close approximation
|
||||
theta = 2 * pi * freq * 3.236e-6
|
||||
c *= cos(theta) - 1j * sin(theta)
|
||||
return cmath.phase(c)
|
||||
```
|
||||
|
|
825
phase/adc.c
825
phase/adc.c
|
@ -1,825 +0,0 @@
|
|||
/*
|
||||
* This file is part of the MicroPython project, http://micropython.org/
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2013, 2014 Damien P. George
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "py/runtime.h"
|
||||
#include "py/binary.h"
|
||||
#include "py/mphal.h"
|
||||
#include "adc.h"
|
||||
#include "pin.h"
|
||||
#include "genhdr/pins.h"
|
||||
#include "timer.h"
|
||||
|
||||
#if MICROPY_HW_ENABLE_ADC
|
||||
|
||||
/// \moduleref pyb
|
||||
/// \class ADC - analog to digital conversion: read analog values on a pin
|
||||
///
|
||||
/// Usage:
|
||||
///
|
||||
/// adc = pyb.ADC(pin) # create an analog object from a pin
|
||||
/// val = adc.read() # read an analog value
|
||||
///
|
||||
/// adc = pyb.ADCAll(resolution) # creale an ADCAll object
|
||||
/// val = adc.read_channel(channel) # read the given channel
|
||||
/// val = adc.read_core_temp() # read MCU temperature
|
||||
/// val = adc.read_core_vbat() # read MCU VBAT
|
||||
/// val = adc.read_core_vref() # read MCU VREF
|
||||
|
||||
/* ADC defintions */
|
||||
#define ADCx (ADC1)
|
||||
#define ADCx_CLK_ENABLE __HAL_RCC_ADC1_CLK_ENABLE
|
||||
#define ADC_NUM_CHANNELS (19)
|
||||
|
||||
#if defined(MCU_SERIES_F4)
|
||||
|
||||
#define ADC_FIRST_GPIO_CHANNEL (0)
|
||||
#define ADC_LAST_GPIO_CHANNEL (15)
|
||||
#define ADC_CAL_ADDRESS (0x1fff7a2a)
|
||||
#define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS + 2))
|
||||
#define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 4))
|
||||
|
||||
#elif defined(MCU_SERIES_F7)
|
||||
|
||||
#define ADC_FIRST_GPIO_CHANNEL (0)
|
||||
#define ADC_LAST_GPIO_CHANNEL (15)
|
||||
#if defined(STM32F722xx) || defined(STM32F723xx) || \
|
||||
defined(STM32F732xx) || defined(STM32F733xx)
|
||||
#define ADC_CAL_ADDRESS (0x1ff07a2a)
|
||||
#else
|
||||
#define ADC_CAL_ADDRESS (0x1ff0f44a)
|
||||
#endif
|
||||
|
||||
#define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS + 2))
|
||||
#define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 4))
|
||||
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
|
||||
#define ADC_FIRST_GPIO_CHANNEL (1)
|
||||
#define ADC_LAST_GPIO_CHANNEL (16)
|
||||
#define ADC_CAL_ADDRESS (0x1fff75aa)
|
||||
#define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS - 2))
|
||||
#define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 0x20))
|
||||
|
||||
#else
|
||||
|
||||
#error Unsupported processor
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(STM32F405xx) || defined(STM32F415xx) || \
|
||||
defined(STM32F407xx) || defined(STM32F417xx) || \
|
||||
defined(STM32F401xC) || defined(STM32F401xE) || \
|
||||
defined(STM32F411xE)
|
||||
#define VBAT_DIV (2)
|
||||
#elif defined(STM32F427xx) || defined(STM32F429xx) || \
|
||||
defined(STM32F437xx) || defined(STM32F439xx) || \
|
||||
defined(STM32F722xx) || defined(STM32F723xx) || \
|
||||
defined(STM32F732xx) || defined(STM32F733xx) || \
|
||||
defined(STM32F746xx) || defined(STM32F767xx) || \
|
||||
defined(STM32F769xx) || defined(STM32F446xx)
|
||||
#define VBAT_DIV (4)
|
||||
#elif defined(STM32L475xx) || defined(STM32L476xx)
|
||||
#define VBAT_DIV (3)
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
|
||||
/* Core temperature sensor definitions */
|
||||
#define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resoultion) */
|
||||
#define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resoultion) */
|
||||
|
||||
// scale and calibration values for VBAT and VREF
|
||||
#define ADC_SCALE (3.3f / 4095)
|
||||
#define VREFIN_CAL ((uint16_t *)ADC_CAL_ADDRESS)
|
||||
|
||||
typedef struct _pyb_obj_adc_t {
|
||||
mp_obj_base_t base;
|
||||
mp_obj_t pin_name;
|
||||
int channel;
|
||||
ADC_HandleTypeDef handle;
|
||||
} pyb_obj_adc_t;
|
||||
|
||||
// convert user-facing channel number into internal channel number
|
||||
static inline uint32_t adc_get_internal_channel(uint32_t channel) {
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
// on F4 and F7 MCUs we want channel 16 to always be the TEMPSENSOR
|
||||
// (on some MCUs ADC_CHANNEL_TEMPSENSOR=16, on others it doesn't)
|
||||
if (channel == 16) {
|
||||
channel = ADC_CHANNEL_TEMPSENSOR;
|
||||
}
|
||||
#endif
|
||||
return channel;
|
||||
}
|
||||
|
||||
STATIC bool is_adcx_channel(int channel) {
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
return IS_ADC_CHANNEL(channel);
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
ADC_HandleTypeDef handle;
|
||||
handle.Instance = ADCx;
|
||||
return IS_ADC_CHANNEL(&handle, channel);
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
}
|
||||
|
||||
STATIC void adc_wait_for_eoc_or_timeout(int32_t timeout) {
|
||||
uint32_t tickstart = HAL_GetTick();
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
while ((ADCx->SR & ADC_FLAG_EOC) != ADC_FLAG_EOC) {
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
while (READ_BIT(ADCx->ISR, ADC_FLAG_EOC) != ADC_FLAG_EOC) {
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
if (((HAL_GetTick() - tickstart ) > timeout)) {
|
||||
break; // timeout
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
STATIC void adcx_clock_enable(void) {
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
ADCx_CLK_ENABLE();
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
__HAL_RCC_ADC_CLK_ENABLE();
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
}
|
||||
|
||||
STATIC void adc_init_single(pyb_obj_adc_t *adc_obj) {
|
||||
if (!is_adcx_channel(adc_obj->channel)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (ADC_FIRST_GPIO_CHANNEL <= adc_obj->channel && adc_obj->channel <= ADC_LAST_GPIO_CHANNEL) {
|
||||
// Channels 0-16 correspond to real pins. Configure the GPIO pin in
|
||||
// ADC mode.
|
||||
const pin_obj_t *pin = pin_adc1[adc_obj->channel];
|
||||
mp_hal_gpio_clock_enable(pin->gpio);
|
||||
GPIO_InitTypeDef GPIO_InitStructure;
|
||||
GPIO_InitStructure.Pin = pin->pin_mask;
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG_ADC_CONTROL;
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
GPIO_InitStructure.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure);
|
||||
}
|
||||
|
||||
adcx_clock_enable();
|
||||
|
||||
ADC_HandleTypeDef *adcHandle = &adc_obj->handle;
|
||||
adcHandle->Instance = ADCx;
|
||||
adcHandle->Init.ContinuousConvMode = DISABLE;
|
||||
adcHandle->Init.DiscontinuousConvMode = DISABLE;
|
||||
adcHandle->Init.NbrOfDiscConversion = 0;
|
||||
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
|
||||
adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
||||
adcHandle->Init.NbrOfConversion = 1;
|
||||
adcHandle->Init.DMAContinuousRequests = DISABLE;
|
||||
adcHandle->Init.Resolution = ADC_RESOLUTION_12B;
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
adcHandle->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
|
||||
adcHandle->Init.ScanConvMode = DISABLE;
|
||||
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
|
||||
adcHandle->Init.EOCSelection = DISABLE;
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
adcHandle->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
|
||||
adcHandle->Init.ScanConvMode = ADC_SCAN_DISABLE;
|
||||
adcHandle->Init.EOCSelection = ADC_EOC_SINGLE_CONV;
|
||||
adcHandle->Init.ExternalTrigConv = ADC_SOFTWARE_START;
|
||||
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
|
||||
adcHandle->Init.LowPowerAutoWait = DISABLE;
|
||||
adcHandle->Init.Overrun = ADC_OVR_DATA_PRESERVED;
|
||||
adcHandle->Init.OversamplingMode = DISABLE;
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
|
||||
HAL_ADC_Init(adcHandle);
|
||||
|
||||
#if defined(MCU_SERIES_L4)
|
||||
ADC_MultiModeTypeDef multimode;
|
||||
multimode.Mode = ADC_MODE_INDEPENDENT;
|
||||
if (HAL_ADCEx_MultiModeConfigChannel(adcHandle, &multimode) != HAL_OK)
|
||||
{
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Can not set multimode on ADC1 channel: %d", adc_obj->channel));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
STATIC void adc_config_channel(ADC_HandleTypeDef *adc_handle, uint32_t channel) {
|
||||
ADC_ChannelConfTypeDef sConfig;
|
||||
|
||||
sConfig.Channel = channel;
|
||||
sConfig.Rank = 1;
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
|
||||
sConfig.SingleDiff = ADC_SINGLE_ENDED;
|
||||
sConfig.OffsetNumber = ADC_OFFSET_NONE;
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
sConfig.Offset = 0;
|
||||
|
||||
HAL_ADC_ConfigChannel(adc_handle, &sConfig);
|
||||
}
|
||||
|
||||
STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) {
|
||||
uint32_t rawValue = 0;
|
||||
|
||||
HAL_ADC_Start(adcHandle);
|
||||
if (HAL_ADC_PollForConversion(adcHandle, 10) == HAL_OK
|
||||
&& (HAL_ADC_GetState(adcHandle) & HAL_ADC_STATE_REG_EOC) == HAL_ADC_STATE_REG_EOC) {
|
||||
rawValue = HAL_ADC_GetValue(adcHandle);
|
||||
}
|
||||
HAL_ADC_Stop(adcHandle);
|
||||
|
||||
return rawValue;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/* MicroPython bindings : adc object (single channel) */
|
||||
|
||||
STATIC void adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
||||
pyb_obj_adc_t *self = self_in;
|
||||
mp_print_str(print, "<ADC on ");
|
||||
mp_obj_print_helper(print, self->pin_name, PRINT_STR);
|
||||
mp_printf(print, " channel=%lu>", self->channel);
|
||||
}
|
||||
|
||||
/// \classmethod \constructor(pin)
|
||||
/// Create an ADC object associated with the given pin.
|
||||
/// This allows you to then read analog values on that pin.
|
||||
STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
// check number of arguments
|
||||
mp_arg_check_num(n_args, n_kw, 1, 1, false);
|
||||
|
||||
// 1st argument is the pin name
|
||||
mp_obj_t pin_obj = args[0];
|
||||
|
||||
uint32_t channel;
|
||||
|
||||
if (MP_OBJ_IS_INT(pin_obj)) {
|
||||
channel = adc_get_internal_channel(mp_obj_get_int(pin_obj));
|
||||
} else {
|
||||
const pin_obj_t *pin = pin_find(pin_obj);
|
||||
if ((pin->adc_num & PIN_ADC1) == 0) {
|
||||
// No ADC1 function on that pin
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q does not have ADC capabilities", pin->name));
|
||||
}
|
||||
channel = pin->adc_channel;
|
||||
}
|
||||
|
||||
if (!is_adcx_channel(channel)) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel));
|
||||
}
|
||||
|
||||
|
||||
if (ADC_FIRST_GPIO_CHANNEL <= channel && channel <= ADC_LAST_GPIO_CHANNEL) {
|
||||
// these channels correspond to physical GPIO ports so make sure they exist
|
||||
if (pin_adc1[channel] == NULL) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
||||
"channel %d not available on this board", channel));
|
||||
}
|
||||
}
|
||||
|
||||
pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t);
|
||||
memset(o, 0, sizeof(*o));
|
||||
o->base.type = &pyb_adc_type;
|
||||
o->pin_name = pin_obj;
|
||||
o->channel = channel;
|
||||
adc_init_single(o);
|
||||
|
||||
return o;
|
||||
}
|
||||
|
||||
/// \method read()
|
||||
/// Read the value on the analog pin and return it. The returned value
|
||||
/// will be between 0 and 4095.
|
||||
STATIC mp_obj_t adc_read(mp_obj_t self_in) {
|
||||
pyb_obj_adc_t *self = self_in;
|
||||
|
||||
adc_config_channel(&self->handle, self->channel);
|
||||
uint32_t data = adc_read_channel(&self->handle);
|
||||
return mp_obj_new_int(data);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read);
|
||||
|
||||
/// \method read_timed(buf, timer)
|
||||
///
|
||||
/// Read analog values into `buf` at a rate set by the `timer` object.
|
||||
///
|
||||
/// `buf` can be bytearray or array.array for example. The ADC values have
|
||||
/// 12-bit resolution and are stored directly into `buf` if its element size is
|
||||
/// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then
|
||||
/// the sample resolution will be reduced to 8 bits.
|
||||
///
|
||||
/// `timer` should be a Timer object, and a sample is read each time the timer
|
||||
/// triggers. The timer must already be initialised and running at the desired
|
||||
/// sampling frequency.
|
||||
///
|
||||
/// To support previous behaviour of this function, `timer` can also be an
|
||||
/// integer which specifies the frequency (in Hz) to sample at. In this case
|
||||
/// Timer(6) will be automatically configured to run at the given frequency.
|
||||
///
|
||||
/// Example using a Timer object (preferred way):
|
||||
///
|
||||
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
|
||||
/// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
|
||||
/// buf = bytearray(100) # creat a buffer to store the samples
|
||||
/// adc.read_timed(buf, tim) # sample 100 values, taking 10s
|
||||
///
|
||||
/// Example using an integer for the frequency:
|
||||
///
|
||||
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
|
||||
/// buf = bytearray(100) # create a buffer of 100 bytes
|
||||
/// adc.read_timed(buf, 10) # read analog values into buf at 10Hz
|
||||
/// # this will take 10 seconds to finish
|
||||
/// for val in buf: # loop over all values
|
||||
/// print(val) # print the value out
|
||||
///
|
||||
/// This function does not allocate any memory.
|
||||
STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) {
|
||||
pyb_obj_adc_t *self = self_in;
|
||||
|
||||
mp_buffer_info_t bufinfo;
|
||||
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
|
||||
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
|
||||
|
||||
TIM_HandleTypeDef *tim;
|
||||
#if defined(TIM6)
|
||||
if (mp_obj_is_integer(freq_in)) {
|
||||
// freq in Hz given so init TIM6 (legacy behaviour)
|
||||
tim = timer_tim6_init(mp_obj_get_int(freq_in));
|
||||
HAL_TIM_Base_Start(tim);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
// use the supplied timer object as the sampling time base
|
||||
tim = pyb_timer_get_handle(freq_in);
|
||||
}
|
||||
|
||||
// configure the ADC channel
|
||||
adc_config_channel(&self->handle, self->channel);
|
||||
|
||||
// This uses the timer in polling mode to do the sampling
|
||||
// TODO use DMA
|
||||
|
||||
uint nelems = bufinfo.len / typesize;
|
||||
for (uint index = 0; index < nelems; index++) {
|
||||
// Wait for the timer to trigger so we sample at the correct frequency
|
||||
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
|
||||
}
|
||||
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
|
||||
|
||||
if (index == 0) {
|
||||
// for the first sample we need to turn the ADC on
|
||||
HAL_ADC_Start(&self->handle);
|
||||
} else {
|
||||
// for subsequent samples we can just set the "start sample" bit
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
SET_BIT(ADCx->CR, ADC_CR_ADSTART);
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
}
|
||||
|
||||
// wait for sample to complete
|
||||
#define READ_TIMED_TIMEOUT (10) // in ms
|
||||
adc_wait_for_eoc_or_timeout(READ_TIMED_TIMEOUT);
|
||||
|
||||
// read value
|
||||
uint value = ADCx->DR;
|
||||
|
||||
// store value in buffer
|
||||
if (typesize == 1) {
|
||||
value >>= 4;
|
||||
}
|
||||
mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value);
|
||||
}
|
||||
|
||||
// turn the ADC off
|
||||
HAL_ADC_Stop(&self->handle);
|
||||
|
||||
#if defined(TIM6)
|
||||
if (mp_obj_is_integer(freq_in)) {
|
||||
// stop timer if we initialised TIM6 in this function (legacy behaviour)
|
||||
HAL_TIM_Base_Stop(tim);
|
||||
}
|
||||
#endif
|
||||
|
||||
return mp_obj_new_int(bufinfo.len);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed);
|
||||
|
||||
/// \method read_timed_multi((adcx, adcy, ...), (bufx, bufy, ...), timer)
|
||||
///
|
||||
/// Read analog values from multiple ADC's into `buf` at a rate set by the
|
||||
/// `timer` object. Each ADC has its own buffer. Can be used to extract
|
||||
/// relative timing or phase data. All buffers must be of the same type and
|
||||
/// length.
|
||||
///
|
||||
/// Buffers can be bytearray or array.array for example. The ADC values have
|
||||
/// 12-bit resolution and are stored directly into `buf` if its element size is
|
||||
/// 16 bits or greater. If buffers have only 8-bit elements (eg a bytearray)
|
||||
/// then the sample resolution will be reduced to 8 bits.
|
||||
///
|
||||
/// `timer` should be a Timer object, and a sample from each ADC is read each
|
||||
/// time the timer triggers. The timer must already be initialised and running
|
||||
/// at the desired sampling frequency.
|
||||
///
|
||||
/// Example reading three ADC's:
|
||||
///
|
||||
/// adc0 = pyb.ADC(pyb.Pin.board.X1) # Create ADC's
|
||||
/// adc1 = pyb.ADC(pyb.Pin.board.X2)
|
||||
/// adc2 = pyb.ADC(pyb.Pin.board.X3)
|
||||
/// tim = pyb.Timer(8, freq=100) # Create timer
|
||||
/// rx0 = array.array('H', (0 for i in range(100))) # ADC buffers of
|
||||
/// rx1 = array.array('H', (0 for i in range(100))) # 100 16-bit words
|
||||
/// rx2 = array.array('H', (0 for i in range(100)))
|
||||
/// # read analog values into buf at 100Hz (takes one second)
|
||||
/// pyb.ADC.read_timed_multi((adc0, adc1, adc2), (rx0, rx1, rx2), tim)
|
||||
/// for n in range(len(rx0)):
|
||||
/// print(rx0[n], rx1[n], rx2[n])
|
||||
///
|
||||
/// This function does not allocate any memory.
|
||||
|
||||
STATIC mp_obj_t adc_read_timed_multi(mp_obj_t adc_array_in, mp_obj_t buf_array_in, mp_obj_t tim_in) {
|
||||
size_t nadcs, nbufs;
|
||||
mp_obj_t *adc_array, *buf_array;
|
||||
mp_obj_get_array(adc_array_in, &nadcs, &adc_array);
|
||||
mp_obj_get_array(buf_array_in, &nbufs, &buf_array);
|
||||
|
||||
if (nadcs != nbufs) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
||||
"length of buffer list and ADC list differ"));
|
||||
}
|
||||
if (nadcs < 1) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
||||
"must specify at least 1 ADC"));
|
||||
}
|
||||
|
||||
// Get buf for first ADC. Get word size. Check other buffers match.
|
||||
mp_buffer_info_t bufinfo;
|
||||
mp_get_buffer_raise(buf_array[0], &bufinfo, MP_BUFFER_WRITE);
|
||||
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
|
||||
for (uint array_index = 0; array_index < nbufs; array_index++) {
|
||||
mp_buffer_info_t bufinfo_curr;
|
||||
mp_get_buffer_raise(buf_array[array_index], &bufinfo_curr, MP_BUFFER_WRITE);
|
||||
if ((bufinfo.len != bufinfo_curr.len) || (bufinfo.typecode != bufinfo_curr.typecode)) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
||||
"size and type of buffers must match"));
|
||||
}
|
||||
}
|
||||
|
||||
// use the supplied timer object as the sampling time base
|
||||
TIM_HandleTypeDef *tim;
|
||||
tim = pyb_timer_get_handle(tim_in);
|
||||
|
||||
// Start adc. This is slow so wait for it to start.
|
||||
pyb_obj_adc_t *adc0 = adc_array[0];
|
||||
adc_config_channel(&adc0->handle, adc0->channel);
|
||||
HAL_ADC_Start(&adc0->handle);
|
||||
// wait for sample to complete and discard
|
||||
#define READ_TIMED_TIMEOUT (10) // in ms
|
||||
adc_wait_for_eoc_or_timeout(READ_TIMED_TIMEOUT);
|
||||
// read (and discard) value
|
||||
uint value = ADCx->DR;
|
||||
|
||||
// Ensure first sample is on a timer tick
|
||||
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
|
||||
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
|
||||
}
|
||||
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
|
||||
|
||||
// Overrun check: assume success.
|
||||
uint success = 1;
|
||||
uint nelems = bufinfo.len / typesize;
|
||||
for (uint elem_index = 0; elem_index < nelems; elem_index++) {
|
||||
if (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) != RESET) {
|
||||
// Timer has already triggered.
|
||||
success = 0;
|
||||
} else {
|
||||
// Wait for the timer to trigger so we sample at the correct frequency
|
||||
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
|
||||
}
|
||||
}
|
||||
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
|
||||
|
||||
for (uint array_index = 0; array_index < nadcs; array_index++) {
|
||||
pyb_obj_adc_t *adc = adc_array[array_index];
|
||||
// configure the ADC channel
|
||||
adc_config_channel(&adc->handle, adc->channel);
|
||||
// for the first sample we need to turn the ADC on
|
||||
// ADC is started: set the "start sample" bit
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
SET_BIT(ADCx->CR, ADC_CR_ADSTART);
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
// wait for sample to complete
|
||||
#define READ_TIMED_TIMEOUT (10) // in ms
|
||||
adc_wait_for_eoc_or_timeout(READ_TIMED_TIMEOUT);
|
||||
|
||||
// read value
|
||||
value = ADCx->DR;
|
||||
|
||||
// store values in buffer
|
||||
if (typesize == 1) {
|
||||
value >>= 4;
|
||||
}
|
||||
mp_buffer_info_t bufinfo_curr; // Get buf for current ADC
|
||||
mp_get_buffer_raise(buf_array[array_index], &bufinfo_curr, MP_BUFFER_WRITE);
|
||||
mp_binary_set_val_array_from_int(bufinfo_curr.typecode, bufinfo_curr.buf, elem_index, value);
|
||||
}
|
||||
}
|
||||
|
||||
// turn the ADC off
|
||||
adc0 = adc_array[0];
|
||||
HAL_ADC_Stop(&adc0->handle);
|
||||
return mp_obj_new_bool(success);
|
||||
}
|
||||
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_multi_fun_obj, adc_read_timed_multi);
|
||||
|
||||
//STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(adc_read_timed_multi_fun_obj, 3, 3, adc_read_timed_multi);
|
||||
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(adc_read_timed_multi_obj, MP_ROM_PTR(&adc_read_timed_multi_fun_obj));
|
||||
|
||||
STATIC const mp_rom_map_elem_t adc_locals_dict_table[] = {
|
||||
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&adc_read_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_read_timed), MP_ROM_PTR(&adc_read_timed_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_read_timed_multi), MP_ROM_PTR(&adc_read_timed_multi_obj) },
|
||||
};
|
||||
|
||||
STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table);
|
||||
|
||||
const mp_obj_type_t pyb_adc_type = {
|
||||
{ &mp_type_type },
|
||||
.name = MP_QSTR_ADC,
|
||||
.print = adc_print,
|
||||
.make_new = adc_make_new,
|
||||
.locals_dict = (mp_obj_dict_t*)&adc_locals_dict,
|
||||
};
|
||||
|
||||
/******************************************************************************/
|
||||
/* adc all object */
|
||||
|
||||
typedef struct _pyb_adc_all_obj_t {
|
||||
mp_obj_base_t base;
|
||||
ADC_HandleTypeDef handle;
|
||||
} pyb_adc_all_obj_t;
|
||||
|
||||
void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution, uint32_t en_mask) {
|
||||
|
||||
switch (resolution) {
|
||||
case 6: resolution = ADC_RESOLUTION_6B; break;
|
||||
case 8: resolution = ADC_RESOLUTION_8B; break;
|
||||
case 10: resolution = ADC_RESOLUTION_10B; break;
|
||||
case 12: resolution = ADC_RESOLUTION_12B; break;
|
||||
default:
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
||||
"resolution %d not supported", resolution));
|
||||
}
|
||||
|
||||
for (uint32_t channel = ADC_FIRST_GPIO_CHANNEL; channel <= ADC_LAST_GPIO_CHANNEL; ++channel) {
|
||||
// only initialise those channels that are selected with the en_mask
|
||||
if (en_mask & (1 << channel)) {
|
||||
// Channels 0-16 correspond to real pins. Configure the GPIO pin in
|
||||
// ADC mode.
|
||||
const pin_obj_t *pin = pin_adc1[channel];
|
||||
if (pin) {
|
||||
mp_hal_gpio_clock_enable(pin->gpio);
|
||||
GPIO_InitTypeDef GPIO_InitStructure;
|
||||
GPIO_InitStructure.Pin = pin->pin_mask;
|
||||
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
|
||||
GPIO_InitStructure.Pull = GPIO_NOPULL;
|
||||
HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
adcx_clock_enable();
|
||||
|
||||
ADC_HandleTypeDef *adcHandle = &adc_all->handle;
|
||||
adcHandle->Instance = ADCx;
|
||||
adcHandle->Init.Resolution = resolution;
|
||||
adcHandle->Init.ContinuousConvMode = DISABLE;
|
||||
adcHandle->Init.DiscontinuousConvMode = DISABLE;
|
||||
adcHandle->Init.NbrOfDiscConversion = 0;
|
||||
adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
|
||||
adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
||||
adcHandle->Init.NbrOfConversion = 1;
|
||||
adcHandle->Init.DMAContinuousRequests = DISABLE;
|
||||
adcHandle->Init.EOCSelection = DISABLE;
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
adcHandle->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
|
||||
adcHandle->Init.ScanConvMode = DISABLE;
|
||||
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
|
||||
#elif defined(MCU_SERIES_L4)
|
||||
adcHandle->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
|
||||
adcHandle->Init.ScanConvMode = ADC_SCAN_DISABLE;
|
||||
adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIG_T1_CC1;
|
||||
adcHandle->Init.LowPowerAutoWait = DISABLE;
|
||||
adcHandle->Init.Overrun = ADC_OVR_DATA_PRESERVED;
|
||||
adcHandle->Init.OversamplingMode = DISABLE;
|
||||
#else
|
||||
#error Unsupported processor
|
||||
#endif
|
||||
|
||||
HAL_ADC_Init(adcHandle);
|
||||
}
|
||||
|
||||
uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
|
||||
adc_config_channel(adcHandle, channel);
|
||||
return adc_read_channel(adcHandle);
|
||||
}
|
||||
|
||||
int adc_get_resolution(ADC_HandleTypeDef *adcHandle) {
|
||||
uint32_t res_reg = ADC_GET_RESOLUTION(adcHandle);
|
||||
|
||||
switch (res_reg) {
|
||||
case ADC_RESOLUTION_6B: return 6;
|
||||
case ADC_RESOLUTION_8B: return 8;
|
||||
case ADC_RESOLUTION_10B: return 10;
|
||||
}
|
||||
return 12;
|
||||
}
|
||||
|
||||
int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) {
|
||||
int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR);
|
||||
|
||||
// Note: constants assume 12-bit resolution, so we scale the raw value to
|
||||
// be 12-bits.
|
||||
raw_value <<= (12 - adc_get_resolution(adcHandle));
|
||||
|
||||
return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25;
|
||||
}
|
||||
|
||||
#if MICROPY_PY_BUILTINS_FLOAT
|
||||
// correction factor for reference value
|
||||
STATIC volatile float adc_refcor = 1.0f;
|
||||
|
||||
float adc_read_core_temp_float(ADC_HandleTypeDef *adcHandle) {
|
||||
int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR);
|
||||
|
||||
// constants assume 12-bit resolution so we scale the raw value to 12-bits
|
||||
raw_value <<= (12 - adc_get_resolution(adcHandle));
|
||||
|
||||
float core_temp_avg_slope = (*ADC_CAL2 - *ADC_CAL1) / 80.0;
|
||||
return (((float)raw_value * adc_refcor - *ADC_CAL1) / core_temp_avg_slope) + 30.0f;
|
||||
}
|
||||
|
||||
float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) {
|
||||
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VBAT);
|
||||
|
||||
// Note: constants assume 12-bit resolution, so we scale the raw value to
|
||||
// be 12-bits.
|
||||
raw_value <<= (12 - adc_get_resolution(adcHandle));
|
||||
|
||||
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
|
||||
// ST docs say that (at least on STM32F42x and STM32F43x), VBATE must
|
||||
// be disabled when TSVREFE is enabled for TEMPSENSOR and VREFINT
|
||||
// conversions to work. VBATE is enabled by the above call to read
|
||||
// the channel, and here we disable VBATE so a subsequent call for
|
||||
// TEMPSENSOR or VREFINT works correctly.
|
||||
ADC->CCR &= ~ADC_CCR_VBATE;
|
||||
#endif
|
||||
|
||||
return raw_value * VBAT_DIV * ADC_SCALE * adc_refcor;
|
||||
}
|
||||
|
||||
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) {
|
||||
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VREFINT);
|
||||
|
||||
// Note: constants assume 12-bit resolution, so we scale the raw value to
|
||||
// be 12-bits.
|
||||
raw_value <<= (12 - adc_get_resolution(adcHandle));
|
||||
|
||||
// update the reference correction factor
|
||||
adc_refcor = ((float)(*VREFIN_CAL)) / ((float)raw_value);
|
||||
|
||||
return (*VREFIN_CAL) * ADC_SCALE;
|
||||
}
|
||||
#endif
|
||||
|
||||
/******************************************************************************/
|
||||
/* MicroPython bindings : adc_all object */
|
||||
|
||||
STATIC mp_obj_t adc_all_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
// check number of arguments
|
||||
mp_arg_check_num(n_args, n_kw, 1, 2, false);
|
||||
|
||||
// make ADCAll object
|
||||
pyb_adc_all_obj_t *o = m_new_obj(pyb_adc_all_obj_t);
|
||||
o->base.type = &pyb_adc_all_type;
|
||||
mp_int_t res = mp_obj_get_int(args[0]);
|
||||
uint32_t en_mask = 0xffffffff;
|
||||
if (n_args > 1) {
|
||||
en_mask = mp_obj_get_int(args[1]);
|
||||
}
|
||||
adc_init_all(o, res, en_mask);
|
||||
|
||||
return o;
|
||||
}
|
||||
|
||||
STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) {
|
||||
pyb_adc_all_obj_t *self = self_in;
|
||||
uint32_t chan = adc_get_internal_channel(mp_obj_get_int(channel));
|
||||
uint32_t data = adc_config_and_read_channel(&self->handle, chan);
|
||||
return mp_obj_new_int(data);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel);
|
||||
|
||||
STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) {
|
||||
pyb_adc_all_obj_t *self = self_in;
|
||||
#if MICROPY_PY_BUILTINS_FLOAT
|
||||
float data = adc_read_core_temp_float(&self->handle);
|
||||
return mp_obj_new_float(data);
|
||||
#else
|
||||
int data = adc_read_core_temp(&self->handle);
|
||||
return mp_obj_new_int(data);
|
||||
#endif
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp);
|
||||
|
||||
#if MICROPY_PY_BUILTINS_FLOAT
|
||||
STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) {
|
||||
pyb_adc_all_obj_t *self = self_in;
|
||||
float data = adc_read_core_vbat(&self->handle);
|
||||
return mp_obj_new_float(data);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat);
|
||||
|
||||
STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) {
|
||||
pyb_adc_all_obj_t *self = self_in;
|
||||
float data = adc_read_core_vref(&self->handle);
|
||||
return mp_obj_new_float(data);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref);
|
||||
|
||||
STATIC mp_obj_t adc_all_read_vref(mp_obj_t self_in) {
|
||||
pyb_adc_all_obj_t *self = self_in;
|
||||
adc_read_core_vref(&self->handle);
|
||||
return mp_obj_new_float(3.3 * adc_refcor);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_vref_obj, adc_all_read_vref);
|
||||
#endif
|
||||
|
||||
STATIC const mp_rom_map_elem_t adc_all_locals_dict_table[] = {
|
||||
{ MP_ROM_QSTR(MP_QSTR_read_channel), MP_ROM_PTR(&adc_all_read_channel_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_read_core_temp), MP_ROM_PTR(&adc_all_read_core_temp_obj) },
|
||||
#if MICROPY_PY_BUILTINS_FLOAT
|
||||
{ MP_ROM_QSTR(MP_QSTR_read_core_vbat), MP_ROM_PTR(&adc_all_read_core_vbat_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_read_core_vref), MP_ROM_PTR(&adc_all_read_core_vref_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_read_vref), MP_ROM_PTR(&adc_all_read_vref_obj) },
|
||||
#endif
|
||||
};
|
||||
|
||||
STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table);
|
||||
|
||||
const mp_obj_type_t pyb_adc_all_type = {
|
||||
{ &mp_type_type },
|
||||
.name = MP_QSTR_ADCAll,
|
||||
.make_new = adc_all_make_new,
|
||||
.locals_dict = (mp_obj_dict_t*)&adc_all_locals_dict,
|
||||
};
|
||||
|
||||
#endif // MICROPY_HW_ENABLE_ADC
|
Ładowanie…
Reference in New Issue