# Copied from https://github.com/robert-hh/SH1106 # # MicroPython SH1106 OLED driver, I2C and SPI interfaces # # The MIT License (MIT) # # Copyright (c) 2016 Radomir Dopieralski (@deshipu), # 2017-2021 Robert Hammelrath (@robert-hh) # 2021 Tim Weber (@scy) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # Sample code sections for ESP8266 pin assignments # ------------ SPI ------------------ # Pin Map SPI # - 3v - xxxxxx - Vcc # - G - xxxxxx - Gnd # - D7 - GPIO 13 - Din / MOSI fixed # - D5 - GPIO 14 - Clk / Sck fixed # - D8 - GPIO 4 - CS (optional, if the only connected device) # - D2 - GPIO 5 - D/C # - D1 - GPIO 2 - Res # # for CS, D/C and Res other ports may be chosen. # # from machine import Pin, SPI # import sh1106 # spi = SPI(1, baudrate=1000000) # display = sh1106.SH1106_SPI(128, 64, spi, Pin(5), Pin(2), Pin(4)) # display.sleep(False) # display.fill(0) # display.text('Testing 1', 0, 0, 1) # display.show() # # --------------- I2C ------------------ # # Pin Map I2C # - 3v - xxxxxx - Vcc # - G - xxxxxx - Gnd # - D2 - GPIO 5 - SCK / SCL # - D1 - GPIO 4 - DIN / SDA # - D0 - GPIO 16 - Res # - G - xxxxxx CS # - G - xxxxxx D/C # # Pin's for I2C can be set almost arbitrary # # from machine import Pin, I2C # import sh1106 # # i2c = I2C(scl=Pin(5), sda=Pin(4), freq=400000) # display = sh1106.SH1106_I2C(128, 64, i2c, Pin(16), 0x3c) # display.sleep(False) # display.fill(0) # display.text('Testing 1', 0, 0, 1) # display.show() from micropython import const import utime as time import framebuf # a few register definitions _SET_CONTRAST = const(0x81) _SET_NORM_INV = const(0xA6) _SET_DISP = const(0xAE) _SET_SCAN_DIR = const(0xC0) _SET_SEG_REMAP = const(0xA0) _LOW_COLUMN_ADDRESS = const(0x00) _HIGH_COLUMN_ADDRESS = const(0x10) _SET_PAGE_ADDRESS = const(0xB0) # Subclassing FrameBuffer provides support for graphics primitives # http://docs.micropython.org/en/latest/pyboard/library/framebuf.html class SH1106(framebuf.FrameBuffer): @staticmethod def rgb(r, g, b): return int((r > 127) or (g > 127) or (b > 127)) def __init__(self, width, height, external_vcc, rotate=0): self.width = width self.height = height self.external_vcc = external_vcc self.flip_en = rotate == 180 or rotate == 270 self.rotate90 = rotate == 90 or rotate == 270 self.pages = self.height // 8 self.bufsize = self.pages * self.width self.renderbuf = bytearray(self.bufsize) self.pages_to_update = 0 if self.rotate90: self.displaybuf = bytearray(self.bufsize) # HMSB is required to keep the bit order in the render buffer # compatible with byte-for-byte remapping to the display buffer, # which is in VLSB. Else we'd have to copy bit-by-bit! super().__init__( self.renderbuf, self.height, self.width, framebuf.MONO_HMSB ) else: self.displaybuf = self.renderbuf super().__init__( self.renderbuf, self.width, self.height, framebuf.MONO_VLSB ) # flip() was called rotate() once, provide backwards compatibility. self.rotate = self.flip self.init_display() def init_display(self): self.reset() self.fill(0) self.show() self.poweron() # rotate90 requires a call to flip() for setting up. self.flip(self.flip_en) def poweroff(self): self.write_cmd(_SET_DISP | 0x00) def poweron(self): self.write_cmd(_SET_DISP | 0x01) if self.delay: time.sleep_ms(self.delay) def flip(self, flag=None, update=True): if flag is None: flag = not self.flip_en mir_v = flag ^ self.rotate90 mir_h = flag self.write_cmd(_SET_SEG_REMAP | (0x01 if mir_v else 0x00)) self.write_cmd(_SET_SCAN_DIR | (0x08 if mir_h else 0x00)) self.flip_en = flag if update: self.show(True) # full update def sleep(self, value): self.write_cmd(_SET_DISP | (not value)) def contrast(self, contrast): self.write_cmd(_SET_CONTRAST) self.write_cmd(contrast) def invert(self, invert): self.write_cmd(_SET_NORM_INV | (invert & 1)) def show(self, full_update=False): # self.* lookups in loops take significant time (~4fps). (w, p, db, rb) = (self.width, self.pages, self.displaybuf, self.renderbuf) if self.rotate90: for i in range(self.bufsize): db[w * (i % p) + (i // p)] = rb[i] if full_update: pages_to_update = (1 << self.pages) - 1 else: pages_to_update = self.pages_to_update # print("Updating pages: {:08b}".format(pages_to_update)) for page in range(self.pages): if pages_to_update & (1 << page): self.write_cmd(_SET_PAGE_ADDRESS | page) self.write_cmd(_LOW_COLUMN_ADDRESS | 2) self.write_cmd(_HIGH_COLUMN_ADDRESS | 0) self.write_data(db[(w * page) : (w * page + w)]) self.pages_to_update = 0 def pixel(self, x, y, color=None): if color is None: return super().pixel(x, y) else: super().pixel(x, y, color) page = y // 8 self.pages_to_update |= 1 << page def text(self, text, x, y, color=1): super().text(text, x, y, color) self.register_updates(y, y + 7) def line(self, x0, y0, x1, y1, color): super().line(x0, y0, x1, y1, color) self.register_updates(y0, y1) def hline(self, x, y, w, color): super().hline(x, y, w, color) self.register_updates(y) def vline(self, x, y, h, color): super().vline(x, y, h, color) self.register_updates(y, y + h - 1) def fill(self, color): super().fill(color) self.pages_to_update = (1 << self.pages) - 1 def blit(self, fbuf, x, y, key=-1, palette=None): super().blit(fbuf, x, y, key, palette) self.register_updates(y, y + self.height) def scroll(self, x, y): # my understanding is that scroll() does a full screen change super().scroll(x, y) self.pages_to_update = (1 << self.pages) - 1 def fill_rect(self, x, y, w, h, color): super().fill_rect(x, y, w, h, color) self.register_updates(y, y + h - 1) def rect(self, x, y, w, h, color): super().rect(x, y, w, h, color) self.register_updates(y, y + h - 1) def register_updates(self, y0, y1=None): # this function takes the top and optional bottom address of the changes made # and updates the pages_to_change list with any changed pages # that are not yet on the list start_page = max(0, y0 // 8) end_page = max(0, y1 // 8) if y1 is not None else start_page # rearrange start_page and end_page if coordinates were given from bottom to top if start_page > end_page: start_page, end_page = end_page, start_page for page in range(start_page, end_page + 1): self.pages_to_update |= 1 << page def reset(self, res): if res is not None: res(1) time.sleep_ms(1) res(0) time.sleep_ms(20) res(1) time.sleep_ms(20) class SH1106_I2C(SH1106): def __init__( self, width, height, i2c, res=None, addr=0x3C, rotate=0, external_vcc=False, delay=0, ): self.i2c = i2c self.addr = addr self.res = res self.temp = bytearray(2) self.delay = delay if res is not None: res.init(res.OUT, value=1) super().__init__(width, height, external_vcc, rotate) def write_cmd(self, cmd): self.temp[0] = 0x80 # Co=1, D/C#=0 self.temp[1] = cmd self.i2c.writeto(self.addr, self.temp) def write_data(self, buf): self.i2c.writeto(self.addr, b"\x40" + buf) def reset(self): super().reset(self.res) class SH1106_SPI(SH1106): def __init__( self, width, height, spi, dc, res=None, cs=None, rotate=0, external_vcc=False, delay=0, ): dc.init(dc.OUT, value=0) if res is not None: res.init(res.OUT, value=0) if cs is not None: cs.init(cs.OUT, value=1) self.spi = spi self.dc = dc self.res = res self.cs = cs self.delay = delay super().__init__(width, height, external_vcc, rotate) def write_cmd(self, cmd): if self.cs is not None: self.cs(1) self.dc(0) self.cs(0) self.spi.write(bytearray([cmd])) self.cs(1) else: self.dc(0) self.spi.write(bytearray([cmd])) def write_data(self, buf): if self.cs is not None: self.cs(1) self.dc(1) self.cs(0) self.spi.write(buf) self.cs(1) else: self.dc(1) self.spi.write(buf) def reset(self): super().reset(self.res)