micropython-micro-gui/gui/core/ugui.py

894 wiersze
31 KiB
Python

# ugui.py Micropython GUI library
# Released under the MIT License (MIT). See LICENSE.
# Copyright (c) 2019-2023 Peter Hinch
# Credit to Bart Cerneels for devising and prototyping the 3-button mode
# Also for suggesting abstracting the input device class.
# Now requires firmware >= V1.20
import uasyncio as asyncio
from time import ticks_diff, ticks_ms
import gc
from array import array
import sys
from gui.core.colors import *
from gui.primitives import Pushbutton
if sys.implementation.version < (1, 20, 0):
raise OSError("Firmware V1.20 or later required.")
# Globally available singleton objects
display = None # Singleton instance
ssd = None
_vb = True
gc.collect()
__version__ = (0, 1, 8)
async def _g():
pass
type_coro = type(_g())
# Navigation destinations
_FIRST = const(0)
_NEXT = const(1)
_PREV = const(2)
_LAST = const(3)
def quiet():
global _vb
_vb = False
# Input abstracts input from 2-5 pushbuttons or 3 buttons + encoder. Handles
# transitions between modes (normal, precision, adjustment)
# BTN class instantiates a push button (may be other than a switch).
class Input:
def __init__(self, nxt, sel, prev, incr, decr, encoder, BTN):
self._encoder = encoder # Encoder in use
self._precision = False # Precision mode
self._adj = False # Adjustment mode
# Count buttons
self._nb = sum(1 for x in (nxt, sel, prev, incr, decr) if x is not None)
# Mandatory buttons
self._next = BTN(nxt)
self._sel = BTN(sel, suppress=True)
# Call current screen bound method
self._next.press_func(Screen.ctrl_move, (_NEXT,))
self._sel.release_func(Screen.sel_ctrl)
if encoder or (self._nb > 2): # Can use precision mode when in adjust mode
self._sel.long_func(self.precision, (True,))
if self._nb == 3: # Special case of 3-button interface
self._sel.double_func(self.adj_mode) # Double click toggles adjust
# Optional buttons
if prev is not None:
self._prev = BTN(prev)
self._prev.press_func(Screen.ctrl_move, (_PREV,))
if encoder:
_vb and print("Using encoder.")
if incr is None or decr is None:
raise ValueError("Must specify pins for encoder.")
from gui.primitives import Encoder
self._enc = Encoder(incr, decr, div=encoder, callback=Screen.adjust)
else:
_vb and print("Using {:d} switches.".format(self._nb))
# incr and decr methods get the button as an arg.
if incr is not None:
sup = BTN(incr)
sup.press_func(Screen.adjust, (sup, 1))
if decr is not None:
sdn = BTN(decr)
sdn.press_func(Screen.adjust, (sdn, -1))
def precision(self, val): # Also called by Screen.ctrl_move to cancel mode
if val:
if self._nb == 3 and not self._adj:
self.adj_mode()
self._precision = True
else:
self._precision = False
Screen.redraw_co()
def adj_mode(self, v=None): # Set, clear or toggle adjustment mode
if self._nb == 3: # Called from menu and dropdown widgets
self._adj = not self._adj if v is None else v
# Change button function
if self._adj:
self._prev.press_func(Screen.adjust, (self._prev, -1))
self._next.press_func(Screen.adjust, (self._next, 1))
else:
self._prev.press_func(Screen.ctrl_move, (_PREV,))
self._next.press_func(Screen.ctrl_move, (_NEXT,))
self._precision = False
Screen.redraw_co()
def encoder(self):
return self._encoder
def is_precision(self):
return self._precision
def is_adjust(self):
return self._adj
# Special mode where an encoder with a "press" pushbutton is the only control.
# nxt and prev are Pin instances corresponding to encoder X and Y.
# sel is a Pin for the encoder's pushbutton.
# encoder is the division ratio.
# Note that using a single click for adjust mode failed because the mode changed when
# activating pushbuttons, checkboxes etc.
class InputEnc:
def __init__(self, nxt, sel, prev, encoder):
from gui.primitives import Encoder
self._encoder = encoder # Encoder in use
self._enc = Encoder(nxt, prev, div=encoder, callback=self.enc_cb)
self._precision = False # Precision mode
self._adj = False # Adjustment mode
self._sel = Pushbutton(sel, suppress=True)
self._sel.release_func(self.release) # Widgets are selected on release.
self._sel.long_func(self.precision, (True,)) # Long press -> precision mode
self._sel.double_func(self.adj_mode, (True,)) # Double press -> adjust mode
# Screen.adjust: adjust the value of a widget. In this case 1st button arg
# is an int (discarded), val is the delta. (With button interface 1st arg
# is the button, delta is +1 or -1).
def enc_cb(self, position, delta): # Eencoder callback
if self._adj:
Screen.adjust(0, delta)
else:
Screen.ctrl_move(_NEXT if delta > 0 else _PREV)
def release(self):
self.adj_mode(False) # Cancel adjust and precision
Screen.sel_ctrl()
def precision(self, val): # Also called by Screen.ctrl_move to cancel mode
if val:
if not self._adj:
self.adj_mode()
self._precision = True
else:
self._precision = False
Screen.redraw_co()
# If v is None, toggle adjustment mode. Bool sets or clears
def adj_mode(self, v=None): # Set, clear or toggle adjustment mode
self._adj = not self._adj if v is None else v
if not self._adj:
self._precision = False
Screen.redraw_co() # Redraw curret object
def encoder(self):
return self._encoder
def is_precision(self):
return self._precision
def is_adjust(self):
return self._adj
# Wrapper for global ssd object providing framebuf compatible methods.
# Must be subclassed: subclass provides input device and populates globals
# display and ssd.
class DisplayIP:
# Populate array for clipped rect
@staticmethod
def crect(x, y, w, h):
c = 4 # Clip pixels
return array(
"H",
(
x + c,
y,
x + w - c,
y,
x + w,
y + c,
x + w,
y + h - c,
x + w - c,
y + h,
x + c,
y + h,
x,
y + h - c,
x,
y + c,
),
)
def __init__(self, ipdev):
self.ipdev = ipdev
self.height = ssd.height
self.width = ssd.width
self._is_grey = False # Not greyed-out
def print_centred(self, writer, x, y, text, fgcolor=None, bgcolor=None, invert=False):
sl = writer.stringlen(text)
writer.set_textpos(ssd, y - writer.height // 2, x - sl // 2)
if self._is_grey:
fgcolor = color_map[GREY_OUT]
writer.setcolor(fgcolor, bgcolor)
writer.printstring(text, invert)
writer.setcolor() # Restore defaults
def print_left(self, writer, x, y, txt, fgcolor=None, bgcolor=None, invert=False):
writer.set_textpos(ssd, y, x)
if self._is_grey:
fgcolor = color_map[GREY_OUT]
writer.setcolor(fgcolor, bgcolor)
writer.printstring(txt, invert)
writer.setcolor() # Restore defaults
# Greying out has only one option given limitation of 4-bit display driver
# It would be possible to do better with RGB565 but would need inverse transformation
# to (r, g, b), scale and re-convert to integer.
def _getcolor(self, color):
# Takes in an integer color, bit size dependent on driver
return color_map[GREY_OUT] if self._is_grey and color != color_map[BG] else color
def usegrey(self, val): # display.usegrey(True) sets greyed-out
self._is_grey = val
return self
# Graphics primitives: despatch to device (i.e. framebuf) or
# local function for methods not implemented by framebuf.
# These methods support greying out color overrides.
# Clear screen.
def clr_scr(self):
ssd.fill_rect(0, 0, self.width, self.height, color_map[BG])
def rect(self, x1, y1, w, h, color):
ssd.rect(x1, y1, w, h, self._getcolor(color))
def fill_rect(self, x1, y1, w, h, color):
ssd.fill_rect(x1, y1, w, h, self._getcolor(color))
def vline(self, x, y, l, color):
ssd.vline(x, y, l, self._getcolor(color))
def hline(self, x, y, l, color):
ssd.hline(x, y, l, self._getcolor(color))
def line(self, x1, y1, x2, y2, color):
ssd.line(x1, y1, x2, y2, self._getcolor(color))
def circle(self, x0, y0, r, color): # Draw circle (maybe grey)
color = self._getcolor(color)
ssd.ellipse(int(x0), int(y0), int(r), int(r), color)
def fillcircle(self, x0, y0, r, color): # Draw filled circle
color = self._getcolor(color)
ssd.ellipse(int(x0), int(y0), int(r), int(r), color, True)
def clip_rect(self, x, y, w, h, color):
ssd.poly(0, 0, self.crect(x, y, w, h), self._getcolor(color))
def fill_clip_rect(self, x, y, w, h, color):
ssd.poly(0, 0, self.crect(x, y, w, h), self._getcolor(color), True)
# Define an input device and populate global ssd and display objects.
class Display(DisplayIP):
def __init__(
self, objssd, nxt, sel, prev=None, incr=None, decr=None, encoder=False, touch=False
):
global display, ssd
ssd = objssd
if incr is False: # Special encoder-only mode
ev = isinstance(encoder, int)
assert ev and touch is False and decr is None and prev is not None, "Invalid args"
ipdev = InputEnc(nxt, sel, prev, encoder)
else:
if touch:
from gui.primitives import ESP32Touch
ESP32Touch.threshold(touch)
ipdev = Input(nxt, sel, prev, incr, decr, encoder, ESP32Touch)
else:
ipdev = Input(nxt, sel, prev, incr, decr, encoder, Pushbutton)
super().__init__(ipdev)
display = self
class Screen:
do_gc = True # Allow user to take control of GC
current_screen = None
is_shutdown = asyncio.Event()
# These events enable user code to synchronise display refresh
# to a realtime process.
rfsh_start = asyncio.Event() # Refresh pauses until set (set by default).
rfsh_done = asyncio.Event() # Flag a user task that a refresh was done.
@classmethod # Called by Input when status change needs redraw of current obj
def redraw_co(cls):
if cls.current_screen is not None:
obj = cls.current_screen.get_obj()
if obj is not None:
obj.draw = True
@classmethod
def ctrl_move(cls, v):
if cls.current_screen is not None:
display.ipdev.precision(False) # Cancel precision mode
cls.current_screen.move(v)
@classmethod
def sel_ctrl(cls):
if cls.current_screen is not None:
display.ipdev.precision(False) # Cancel precision mode
cls.current_screen.do_sel()
# Adjust the value of a widget. If an encoder is used, button arg
# is an int (discarded), val is the delta. If using buttons, 1st
# arg is the button, delta is +1 or -1
@classmethod
def adjust(cls, button, val):
if cls.current_screen is not None:
cls.current_screen.do_adj(button, val)
# Move currency to a specific widget (e.g. ButtonList)
@classmethod
def select(cls, obj):
if cls.current_screen is not None:
return cls.current_screen.move_to(obj)
@classmethod
def show(cls, force):
for obj in cls.current_screen.displaylist:
if obj.visible: # In a buttonlist only show visible button
if force or obj.draw:
obj.show()
@classmethod
def change(cls, cls_new_screen, *, forward=True, args=[], kwargs={}):
cs_old = cls.current_screen
# If initialising ensure there is an event loop before instantiating the
# first Screen: it may create tasks in the constructor.
if cs_old is None:
loop = asyncio.get_event_loop()
else: # Leaving an existing screen
for entry in cls.current_screen.tasks:
# Always cancel on back. Also on forward if requested.
if entry[1] or not forward:
entry[0].cancel()
cls.current_screen.tasks.remove(entry) # remove from list
cs_old.on_hide() # Optional method in subclass
if forward:
if isinstance(cls_new_screen, type):
if isinstance(cs_old, Window):
raise ValueError("Windows are modal.")
new_screen = cls_new_screen(*args, **kwargs)
if not len(new_screen.lstactive):
raise ValueError("Screen has no active widgets.")
else:
raise ValueError("Must pass Screen class or subclass (not instance)")
new_screen.parent = cs_old
cs_new = new_screen
else:
cs_new = cls_new_screen # An object, not a class
display.ipdev.adj_mode(False) # Ensure normal mode
cls.current_screen = cs_new
cs_new.on_open() # Optional subclass method
cs_new._do_open(cs_old) # Clear and redraw
cs_new.after_open() # Optional subclass method
if cs_old is None: # Initialising
loop.run_until_complete(Screen.monitor()) # Starts and ends uasyncio
# Don't do asyncio.new_event_loop() as it prevents re-running
# the same app.
@classmethod
async def monitor(cls):
ar = asyncio.create_task(cls.auto_refresh()) # Start refreshing
await cls.is_shutdown.wait() # and wait for termination.
cls.is_shutdown.clear() # We're going down.
# Task cancellation and shutdown
ar.cancel() # Refresh task
for entry in cls.current_screen.tasks:
# Screen instance will be discarded: no need to worry about .tasks
entry[0].cancel()
await asyncio.sleep_ms(0) # Allow task cancellation to occur.
display.clr_scr()
ssd.show()
cls.current_screen = None # Ensure another demo can run
# If the display driver has an async refresh method, determine the split
# value which must be a factor of the height. In the unlikely event of
# no factor, do_refresh confers no benefit, so use synchronous code.
@classmethod
async def auto_refresh(cls):
arfsh = hasattr(ssd, "do_refresh") # Refresh can be asynchronous.
# By default rfsh_start is permanently set. User code can clear this.
cls.rfsh_start.set()
if arfsh:
h = ssd.height
split = max(y for y in (1, 2, 3, 5, 7) if not h % y)
if split == 1:
arfsh = False
while True:
await cls.rfsh_start.wait()
Screen.show(False) # Update stale controls. No physical refresh.
# Now perform physical refresh.
if arfsh:
await ssd.do_refresh(split)
else:
ssd.show() # Synchronous (blocking) refresh.
# Flag user code.
cls.rfsh_done.set()
await asyncio.sleep_ms(0) # Let user code respond to event
@classmethod
def back(cls):
parent = cls.current_screen.parent
if parent is None: # Closing base screen. Quit.
cls.shutdown()
else:
cls.change(parent, forward=False)
@classmethod
def addobject(cls, obj):
cs = cls.current_screen
if cs is None:
raise OSError("You must create a Screen instance")
# Populate list of active widgets (i.e. ones that can acquire focus).
if obj.active:
# Append to active list regrdless of disabled state which may
# change at runtime.
al = cs.lstactive
empty = al == [] or all(o.greyed_out() for o in al)
al.append(obj)
if empty and not obj.greyed_out():
cs.selected_obj = len(al) - 1 # Index into lstactive
cs.displaylist.append(obj) # All displayable objects
@classmethod
def shutdown(cls):
cls.is_shutdown.set() # Tell monitor() to shutdown
def __init__(self):
self.lstactive = [] # Controls which respond to Select button
self.selected_obj = None # Index of currently selected object
self.displaylist = [] # All displayable objects
self.tasks = [] # Instance can register tasks for cancellation
self.height = ssd.height # Occupies entire display
self.width = ssd.width
self.row = 0
self.col = 0
if Screen.current_screen is None and Screen.do_gc: # Initialising class and task
# Here we create singleton tasks
asyncio.create_task(self._garbage_collect())
Screen.current_screen = self
self.parent = None
def _do_open(self, old_screen): # Window overrides
dev = display.usegrey(False)
# If opening a Screen from a Window just blank and redraw covered area
if isinstance(old_screen, Window):
x0, y0, x1, y1, w, h = old_screen._list_dims()
dev.fill_rect(x0, y0, w, h, color_map[BG]) # Blank to screen BG
for obj in [z for z in self.displaylist if z.overlaps(x0, y0, x1, y1)]:
if obj.visible:
obj.show()
# Normally clear the screen and redraw everything
else:
dev.clr_scr() # Clear framebuf but don't update display
Screen.show(True) # Force full redraw
# Return an active control or None
# By default returns the selected control
# else checks a given control by index into lstactive
def get_obj(self, idx=None):
so = self.selected_obj if idx is None else idx
if so is not None:
co = self.lstactive[so]
if co.visible and not co.greyed_out():
return co
return None
# Move currency to next enabled control. Arg is direction of move.
def move(self, to):
if to == _FIRST:
idx = -1
up = 1
elif to == _LAST:
idx = len(self.lstactive)
up = -1
else:
idx = self.selected_obj
up = 1 if to == _NEXT else -1
lo = self.get_obj() # Old current object
done = False
while not done:
idx += up
idx %= len(self.lstactive)
co = self.get_obj(idx)
if co is not None:
if co is not lo:
self.selected_obj = idx
if lo is not None:
lo.leave() # Tell object it's losing currency.
lo.show() # Re-display with new status
co.enter() # Tell object it has currency
co.show()
done = True
# Move currency to a specific control.
def move_to(self, obj):
lo = self.get_obj() # Old current object
for idx in range(len(self.lstactive)):
co = self.get_obj(idx)
if co is obj:
self.selected_obj = idx
if lo is not None:
lo.leave() # Tell object it's losing currency.
lo.show() # Re-display with new status
co.enter() # Tell object it has currency
co.show()
return True # Success
return False
def do_sel(self): # Direct to current control
co = self.get_obj()
if co is not None:
co.do_sel()
def do_adj(self, button, val):
co = self.get_obj()
if co is not None and hasattr(co, "do_adj"):
co.do_adj(button, val) # Widget can handle up/down
else:
Screen.current_screen.move(_FIRST if val < 0 else _LAST)
# Methods optionally implemented in subclass
def on_open(self):
return
def after_open(self):
return
def on_hide(self):
return
def locn(self, row, col):
return self.row + row, self.col + col
# Housekeeping methods
def reg_task(self, task, on_change=False): # May be passed a coro or a Task
if isinstance(task, type_coro):
task = asyncio.create_task(task)
self.tasks.append((task, on_change))
async def _garbage_collect(self):
n = 0
while Screen.do_gc:
await asyncio.sleep_ms(500)
gc.collect()
n += 1
n &= 0x1F
_vb and (not n) and print("Free RAM", gc.mem_free())
# Very basic window class. Cuts a rectangular hole in a screen on which
# content may be drawn.
class Window(Screen):
_value = None
# Allow a Window to store an arbitrary object. Retrieval may be
# done by caller, after the Window instance was deleted
@classmethod
def value(cls, val=None):
if val is not None:
cls._value = val
return cls._value
@staticmethod
def close(): # More intuitive name for popup window
Screen.back()
def __init__(
self,
row,
col,
height,
width,
*,
draw_border=True,
bgcolor=None,
fgcolor=None,
writer=None,
):
Screen.__init__(self)
self.row = row
self.col = col
self.height = height
self.width = width
self.draw_border = draw_border
self.fgcolor = fgcolor if fgcolor is not None else color_map[FG]
self.bgcolor = bgcolor if bgcolor is not None else color_map[BG]
if writer is not None: # Special case of popup message
DummyWidget(writer, self) # Invisible active widget
def _do_open(self, old_screen):
dev = display.usegrey(False)
x, y = self.col, self.row
dev.fill_rect(x, y, self.width, self.height, self.bgcolor)
if self.draw_border:
dev.rect(x, y, self.width, self.height, self.fgcolor)
Screen.show(True)
def _list_dims(self):
w = self.width
h = self.height
x = self.col
y = self.row
return x, y, x + w, y + h, w, h
# Base class for all displayable objects
class Widget:
def __init__(
self,
writer,
row,
col,
height,
width,
fgcolor,
bgcolor,
bdcolor,
value=None,
active=False,
):
self.active = active
# By default widgets cannot be adjusted: no green border in adjust mode
self.adjustable = False
self._greyed_out = False
Screen.addobject(self)
self.screen = Screen.current_screen
writer.set_clip(True, True, False) # Disable scrolling text
self.writer = writer
# The following assumes that the widget is mal-positioned, not oversize.
if row < 0:
row = 0
self.warning()
elif row + height >= ssd.height:
row = ssd.height - height - 1
self.warning()
if col < 0:
col = 0
self.warning()
elif col + width >= ssd.width:
col = ssd.width - width - 1
self.warning()
self.row = row
self.col = col
self.height = height
self.width = width
# Maximum row and col. Defaults for user metrics. May be overridden
self.mrow = row + height + 2 # in subclass. Allow for border.
self.mcol = col + width + 2
self.visible = True # Used by ButtonList class for invisible buttons
self.draw = True # Signals that obect must be redrawn
self._value = value
# Set colors. Writer colors cannot be None:
# bg == 0, fg == 1 are ultimate (monochrome) defaults.
if fgcolor is None:
fgcolor = writer.fgcolor
if bgcolor is None:
bgcolor = writer.bgcolor
if bdcolor is None:
bdcolor = fgcolor
self.fgcolor = fgcolor
self.bgcolor = bgcolor
# bdcolor is False if no border is to be drawn
self.bdcolor = bdcolor
# Default colors allow restoration after dynamic change (Label)
self.def_fgcolor = fgcolor
self.def_bgcolor = bgcolor
self.def_bdcolor = bdcolor
# has_border is True if a border was drawn
self.has_border = False
self.callback = lambda *_: None # Value change callback
self.args = []
def warning(self):
print(
"Warning: attempt to create {} outside screen dimensions.".format(
self.__class__.__name__
)
)
def value(self, val=None): # User method to get or set value
if val is not None:
if type(val) is float:
val = min(max(val, 0.0), 1.0)
if val != self._value:
self._value = val
self.draw = True # Ensure a redraw on next refresh
self.callback(self, *self.args)
return self._value
def __call__(self, val=None):
return self.value(val)
# Some widgets (e.g. Dial) have an associated Label
def text(self, text=None, invert=False, fgcolor=None, bgcolor=None, bdcolor=None):
if hasattr(self, "label"):
self.label.value(text, invert, fgcolor, bgcolor, bdcolor)
else:
raise ValueError("Method {}.text does not exist.".format(self.__class__.__name__))
# Called from subclass prior to populating framebuf with control
def show(self, black=True):
if self.screen != Screen.current_screen:
# Can occur if a control's action is to change screen.
return False # Subclass abandons
self.draw = False
self.draw_border()
# Blank controls' space
if self.visible:
dev = display.usegrey(self._greyed_out)
x = self.col
y = self.row
dev.fill_rect(x, y, self.width, self.height, color_map[BG] if black else self.bgcolor)
return True
# Called by Screen.show(). Draw background and bounding box if required.
# Border is always 2 pixels wide, outside control's bounding box
def draw_border(self):
if self.screen is Screen.current_screen:
dev = display.usegrey(self._greyed_out)
x = self.col - 2
y = self.row - 2
w = self.width + 4
h = self.height + 4
# print('border', self, display.ipdev.is_adjust())
if self.has_focus() and not isinstance(self, DummyWidget):
color = color_map[FOCUS]
precision = (
hasattr(self, "do_precision")
and self.do_precision
and display.ipdev.is_precision()
)
if precision:
color = self.prcolor
elif display.ipdev.is_adjust() and self.adjustable:
color = color_map[ADJUSTING]
dev.rect(x, y, w, h, color)
self.has_border = True
else:
if isinstance(self.bdcolor, bool): # No border
if self.has_border: # Border exists: erase it
dev.rect(x, y, w, h, color_map[BG])
self.has_border = False
elif self.bdcolor: # Border is required
dev.rect(x, y, w, h, self.bdcolor)
self.has_border = True
def overlaps(self, xa, ya, xb, yb): # Args must be sorted: xb > xa and yb > ya
x0 = self.col
y0 = self.row
x1 = x0 + self.width
y1 = y0 + self.height
if (ya <= y1 and yb >= y0) and (xa <= x1 and xb >= x0):
return True
return False
def _set_callbacks(self, cb, args): # Runs when value changes.
self.callback = cb
self.args = args
def has_focus(self):
if self.active:
cs = Screen.current_screen
if (cso := cs.selected_obj) is not None:
return cs.lstactive[cso] is self
return False
def greyed_out(self, val=None):
if val is not None and self.active and self._greyed_out != val:
self._greyed_out = val
if self.screen is Screen.current_screen:
display.usegrey(val)
self.show()
return self._greyed_out
# Button press methods. Called from Screen if object not greyed out.
# For subclassing if specific behaviour is required.
def do_sel(self): # Select button was pushed
pass
def enter(self): # Control has acquired focus
pass
def leave(self): # Control has lost focus
pass
# Optional methods. Implement for controls which respond to up and down.
# No dummy methods as these would prevent "first" and "last" focus movement
# when current control has focus but is inactive.
# def do_up(self, button)
# def do_down(self, button)
# A LinearIO widget uses the up and down buttons to vary a float. Such widgets
# have do_up and do_down methods which adjust the control's value in a
# time-dependent manner.
class LinearIO(Widget):
def __init__(
self,
writer,
row,
col,
height,
width,
fgcolor,
bgcolor,
bdcolor,
value=None,
active=True,
prcolor=False,
min_delta=0.01,
max_delta=0.1,
):
self.min_delta = min_delta
self.max_delta = max_delta
super().__init__(writer, row, col, height, width, fgcolor, bgcolor, bdcolor, value, active)
self.adjustable = True # Can show adjustable border
self.do_precision = prcolor is not False
if self.do_precision:
self.prcolor = color_map[PRECISION] if prcolor is None else prcolor
# Adjust widget's value. Args: button pressed, amount of increment
def do_adj(self, button, val):
d = self.min_delta * 0.1 if self.precision() else self.min_delta
self.value(self.value() + val * d)
if not display.ipdev.encoder():
asyncio.create_task(self.btnhan(button, val, d))
# Handle increase and decrease buttons. Redefined by textbox.py, scale_log.py
async def btnhan(self, button, up, d):
maxd = self.max_delta if self.precision() else d * 4 # Why move fast in precision mode?
t = ticks_ms()
while button():
await asyncio.sleep_ms(0) # Quit fast on button release
if ticks_diff(ticks_ms(), t) > 500: # Button was held down
d = min(maxd, d * 2)
self.value(self.value() + up * d)
t = ticks_ms()
# Get current status (also used by scale_log widget)
def precision(self):
return self.do_precision and display.ipdev.is_precision()
# The dummy enables popup windows by satisfying the need for at least one active
# widget on a screen. It is invisible and is drawn by Window constructor before
# any user labels..
class DummyWidget(Widget):
def __init__(self, writer, window):
super().__init__(
writer,
window.row + 1,
window.col + 1,
4,
4,
window.fgcolor,
window.bgcolor,
False,
None,
True,
)