# ugui.py Micropython GUI library # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2019-2021 Peter Hinch # Requires uasyncio V3 import uasyncio as asyncio from uasyncio import Event from time import ticks_diff, ticks_ms import gc from gui.core.colors import * from hardware_setup import ssd from gui.primitives.delay_ms import Delay_ms from gui.primitives.switch import Switch # Globally available singleton objects display = None # Singleton instance ssd = None gc.collect() __version__ = (0, 1, 1) # Null function dolittle = lambda *_ : None async def _g(): pass type_coro = type(_g()) _FIRST = const(0) _NEXT = const(1) _PREV = const(2) _LAST = const(3) # Wrapper for ssd providing buttons and framebuf compatible methods class Display: def __init__(self, objssd, nxt, sel, prev=None, up=None, down=None): global display, ssd self._next = Switch(nxt) self._sel = Switch(sel) self._last = None # Last switch pressed. # Mandatory buttons # Call current screen bound method self._next.close_func(self._closure, (self._next, Screen.next_ctrl)) self._sel.close_func(self._closure, (self._sel, Screen.sel_ctrl)) self._sel.open_func(Screen.unsel) self.height = objssd.height self.width = objssd.width # Optional buttons self._prev = None if prev is not None: self._prev = Switch(prev) self._prev.close_func(self._closure, (self._prev, Screen.prev_ctrl)) # Up and down methods get the button as an arg. self._up = None if up is not None: self._up = Switch(up) self._up.close_func(self._closure, (self._up, self.do_up)) self._down = None if down is not None: self._down = Switch(down) self._down.close_func(self._closure, (self._down, self.do_down)) self._is_grey = False # Not greyed-out display = self # Populate globals ssd = objssd # Reject button presses where a button is already pressed. # Execute if initialising, if same switch re-pressed or if last switch released def _closure(self, switch, func): if (self._last is None) or (self._last == switch) or self._last(): self._last = switch func() def print_centred(self, writer, x, y, text, fgcolor=None, bgcolor=None, invert=False): sl = writer.stringlen(text) writer.set_textpos(ssd, y - writer.height // 2, x - sl // 2) if self._is_grey: fgcolor = GREY writer.setcolor(fgcolor, bgcolor) writer.printstring(text, invert) writer.setcolor() # Restore defaults def print_left(self, writer, x, y, txt, fgcolor=None, bgcolor=None, invert=False): writer.set_textpos(ssd, y, x) if self._is_grey: fgcolor = GREY writer.setcolor(fgcolor, bgcolor) writer.printstring(txt, invert) writer.setcolor() # Restore defaults def do_up(self): Screen.up_ctrl(self._up) def do_down(self): Screen.down_ctrl(self._down) # Greying out has only one option given limitation of 4-bit display driver # It would be possible to do better with RGB565 but would need inverse transformation # to (r, g, b), scale and re-convert to integer. def _getcolor(self, color): # Takes in an integer color, bit size dependent on driver return GREY if self._is_grey and color != BGCOLOR else color def usegrey(self, val): # display.usegrey(True) sets greyed-out self._is_grey = val return self # Graphics primitives: despatch to device (i.e. framebuf) or # local function for methods not implemented by framebuf. # These methods support greying out color overrides. # Clear screen. def clr_scr(self): ssd.fill_rect(0, 0, self.width - 1, self.height - 1, BGCOLOR) def rect(self, x1, y1, w, h, color): ssd.rect(x1, y1, w, h, self._getcolor(color)) def fill_rect(self, x1, y1, w, h, color): ssd.fill_rect(x1, y1, w, h, self._getcolor(color)) def vline(self, x, y, l, color): ssd.vline(x, y, l, self._getcolor(color)) def hline(self, x, y, l, color): ssd.hline(x, y, l, self._getcolor(color)) def line(self, x1, y1, x2, y2, color): ssd.line(x1, y1, x2, y2, self._getcolor(color)) # Private method uses physical color def _circle(self, x0, y0, r, color): # Single pixel circle x = -r y = 0 err = 2 -2*r while x <= 0: ssd.pixel(x0 -x, y0 +y, color) ssd.pixel(x0 +x, y0 +y, color) ssd.pixel(x0 +x, y0 -y, color) ssd.pixel(x0 -x, y0 -y, color) e2 = err if (e2 <= y): y += 1 err += y*2 +1 if (-x == y and e2 <= x): e2 = 0 if (e2 > x): x += 1 err += x*2 +1 def circle(self, x0, y0, r, color, width =1): # Draw circle (maybe grey) color = self._getcolor(color) x0, y0, r = int(x0), int(y0), int(r) for r in range(r, r -width, -1): self._circle(x0, y0, r, color) def fillcircle(self, x0, y0, r, color): # Draw filled circle color = self._getcolor(color) x0, y0, r = int(x0), int(y0), int(r) x = -r y = 0 err = 2 -2*r while x <= 0: ssd.line(x0 -x, y0 -y, x0 -x, y0 +y, color) ssd.line(x0 +x, y0 -y, x0 +x, y0 +y, color) e2 = err if (e2 <= y): y +=1 err += y*2 +1 if (-x == y and e2 <= x): e2 = 0 if (e2 > x): x += 1 err += x*2 +1 def clip_rect(self, x, y, w, h, color): color = self._getcolor(color) c = 4 ssd.hline(x + c, y, w - 2 * c, color) ssd.hline(x + c, y + h, w - 2 * c, color) ssd.vline(x, y + c, h - 2 * c, color) ssd.vline(x + w - 1, y + c, h - 2 * c, color) ssd.line(x + c, y, x, y + c, color) ssd.line(x + w - c - 1, y, x + w - 1, y + c, color) ssd.line(x, y + h - c - 1, x + c, y + h - 1, color) ssd.line(x + w - 1, y + h - c - 1, x + w - c - 1, y + h, color) def fill_clip_rect(self, x, y, w, h, color): color = self._getcolor(color) c = 4 ssd.fill_rect(x, y + c, w, h - 2 * c, color) for z in range(c): l = w - 2 * (c - z) # Line length ssd.hline(x + c - z, y + z, l, color) ssd.hline(x + c - z, y + h - z - 1, l, color) class Screen: current_screen = None is_shutdown = Event() @classmethod def next_ctrl(cls): if cls.current_screen is not None: cls.current_screen.move(_NEXT) @classmethod def prev_ctrl(cls): if cls.current_screen is not None: cls.current_screen.move(_PREV) @classmethod def sel_ctrl(cls): if cls.current_screen is not None: cls.current_screen.do_sel() @classmethod def unsel(cls): if cls.current_screen is not None: cls.current_screen.unsel_i() @classmethod def up_ctrl(cls, button): if cls.current_screen is not None: cls.current_screen.do_up(button) @classmethod def down_ctrl(cls, button): if cls.current_screen is not None: cls.current_screen.do_down(button) # Move currency to a specific widget (e.g. ButtonList) @classmethod def select(cls, obj): if cls.current_screen is not None: return cls.current_screen.move_to(obj) @classmethod def show(cls, force): for obj in cls.current_screen.displaylist: if obj.visible: # In a buttonlist only show visible button if force or obj.draw: obj.draw_border() obj.show() obj.draw = False @classmethod def change(cls, cls_new_screen, *, forward=True, args=[], kwargs={}): cs_old = cls.current_screen if cs_old is not None: # Leaving an existing screen for entry in cls.current_screen.tasks: # Always cancel on back. Also on forward if requested. if entry[1] or not forward: entry[0].cancel() cls.current_screen.tasks.remove(entry) # remove from list cs_old.on_hide() # Optional method in subclass if forward: if isinstance(cls_new_screen, type): # Instantiate new screen. __init__ must terminate new_screen = cls_new_screen(*args, **kwargs) else: raise ValueError('Must pass Screen class or subclass (not instance)') new_screen.parent = cs_old cs_new = new_screen else: cs_new = cls_new_screen # An object, not a class cls.current_screen = cs_new cs_new.on_open() # Optional subclass method cs_new._do_open(cs_old) # Clear and redraw cs_new.after_open() # Optional subclass method if cs_old is None: # Initialising asyncio.run(Screen.monitor()) # Starts and ends uasyncio # Don't do asyncio.new_event_loop() as it prevents re-running # the same app. @classmethod async def monitor(cls): ar = asyncio.create_task(cls.auto_refresh()) # Start refreshing await cls.is_shutdown.wait() # and wait for termination. cls.is_shutdown.clear() # We're going down. # Task cancellation and shutdown ar.cancel() # Refresh task for entry in cls.current_screen.tasks: # Screen instance will be discarded: no need to worry about .tasks entry[0].cancel() await asyncio.sleep_ms(0) # Allow task cancellation to occur. display.clr_scr() ssd.show() cls.current_screen = None # Ensure another demo can run # If the display driver has an async refresh method, determine the split # value which must be a factor of the height. In the unlikely event of # no factor, do_refresh confers no benefit, so use synchronous code. @staticmethod async def auto_refresh(): arfsh = hasattr(ssd, 'do_refresh') # Refresh can be asynchronous if arfsh: h = ssd.height split = max(y for y in (1,2,3,5,7) if not h % y) if split == 1: arfsh = False while True: Screen.show(False) # Update stale controls. No physical refresh. # Now perform physical refresh. if arfsh: await ssd.do_refresh(split) else: ssd.show() # Synchronous (blocking) refresh. await asyncio.sleep_ms(0) @classmethod def back(cls): parent = cls.current_screen.parent if parent is None: # Closing base screen. Quit. cls.shutdown() else: cls.change(parent, forward = False) @classmethod def addobject(cls, obj): cs = cls.current_screen if cs is None: raise OSError('You must create a Screen instance') # Populate list of active widgets (i.e. ones that can acquire focus). if obj.active: # Append to active list regrdless of disabled state which may # change at runtime. al = cs.lstactive empty = al == [] or all(o.greyed_out() for o in al) al.append(obj) if empty and not obj.greyed_out(): cs.selected_obj = len(al) - 1 # Index into lstactive cs.displaylist.append(obj) # All displayable objects @classmethod def shutdown(cls): cls.is_shutdown.set() # Tell monitor() to shutdown def __init__(self): self.lstactive = [] # Controls which respond to Select button self.selected_obj = None # Index of currently selected object self.displaylist = [] # All displayable objects self.tasks = [] # Instance can register tasks for cancellation self.modal = False self.height = ssd.height # Occupies entire display self.width = ssd.width self.row = 0 self.col = 0 if Screen.current_screen is None: # Initialising class and task # Here we create singleton tasks asyncio.create_task(self._garbage_collect()) Screen.current_screen = self self.parent = None def _do_open(self, old_screen): # Window overrides dev = display.usegrey(False) # If opening a Screen from an Window just blank and redraw covered area if old_screen is not None and old_screen.modal: x0, y0, x1, y1, w, h = old_screen._list_dims() dev.fill_rect(x0, y0, w, h, BGCOLOR) # Blank to screen BG for obj in [z for z in self.displaylist if z.overlaps(x0, y0, x1, y1)]: if obj.visible: obj.draw_border() obj.show() # Normally clear the screen and redraw everything else: dev.clr_scr() # Clear framebuf but don't update display Screen.show(True) # Force full redraw # Return an active control or None # By default returns the selected control # else checks a given control by index into lstactive def get_obj(self, idx=None): so = self.selected_obj if idx is None else idx if so is not None: co = self.lstactive[so] if co.visible and not co.greyed_out(): return co return None # Move currency to next enabled control. Arg is direction of move. def move(self, to): if to == _FIRST: idx = -1 up = 1 elif to == _LAST: idx = len(self.lstactive) up = -1 else: idx = self.selected_obj up = 1 if to == _NEXT else -1 lo = self.get_obj() # Old current object done = False while not done: idx += up idx %= len(self.lstactive) co = self.get_obj(idx) if co is not None: if co is not lo: self.selected_obj = idx if lo is not None: lo.leave() # Tell object it's losing currency. lo.show() # Re-display with new status co.enter() # Tell object it has currency co.show() elif isinstance(self, Window): # Special case of Window with one object: leave # without making changes (Dropdown in particular) Screen.back() done = True # Move currency to a specific control. def move_to(self, obj): lo = self.get_obj() # Old current object for idx in range(len(self.lstactive)) : co = self.get_obj(idx) if co is obj: self.selected_obj = idx if lo is not None: lo.leave() # Tell object it's losing currency. lo.show() # Re-display with new status co.enter() # Tell object it has currency co.show() return True # Success return False def do_sel(self): # Direct to current control co = self.get_obj() if co is not None: co.do_sel() def unsel_i(self): co = self.get_obj() if co is not None: co.unsel() def do_up(self, button): co = self.get_obj() if co is not None and hasattr(co, 'do_up'): co.do_up(button) # Widget handles up/down else: Screen.current_screen.move(_FIRST) def do_down(self, button): co = self.get_obj() if co is not None and hasattr(co, 'do_down'): co.do_down(button) else: Screen.current_screen.move(_LAST) # Methods optionally implemented in subclass def on_open(self): return def after_open(self): return def on_hide(self): return def locn(self, row, col): return self.row + row, self.col + col # Housekeeping methods def reg_task(self, task, on_change=False): # May be passed a coro or a Task if isinstance(task, type_coro): task = asyncio.create_task(task) self.tasks.append((task, on_change)) async def _garbage_collect(self): while True: await asyncio.sleep_ms(500) gc.collect() gc.threshold(gc.mem_free() // 4 + gc.mem_alloc()) #print(gc.mem_free()) # Very basic window class. Cuts a rectangular hole in a screen on which # content may be drawn. class Window(Screen): _value = None # Allow a Window to store an arbitrary object. Retrieval may be # done by caller, after the Window instance was deleted @classmethod def value(cls, val=None): if val is not None: cls._value = val return cls._value def __init__(self, row, col, height, width, *, draw_border=True, bgcolor=None, fgcolor=None): Screen.__init__(self) self.row = row self.col = col self.height = height self.width = width self.draw_border = draw_border self.modal = True self.fgcolor = fgcolor if fgcolor is not None else WHITE self.bgcolor = bgcolor if bgcolor is not None else BGCOLOR def _do_open(self, old_screen): dev = display.usegrey(False) x, y = self.col, self.row dev.fill_rect(x, y, self.width, self.height, self.bgcolor) if self.draw_border: dev.rect(x, y, self.width, self.height, self.fgcolor) Screen.show(True) def _list_dims(self): w = self.width h = self.height x = self.col y = self.row return x, y, x + w, y + h, w, h # Base class for all displayable objects class Widget: def __init__(self, writer, row, col, height, width, fgcolor, bgcolor, bdcolor, value=None, active=False): self.active = active self._greyed_out = False Screen.addobject(self) self.screen = Screen.current_screen writer.set_clip(True, True, False) # Disable scrolling text self.writer = writer # The following assumes that the widget is mal-positioned, not oversize. if row < 0: row = 0 self.warning() elif row + height >= ssd.height: row = ssd.height - height - 1 self.warning() if col < 0: col = 0 self.warning() elif col + width >= ssd.width: col = ssd.width - width - 1 self.warning() self.row = row self.col = col self.height = height self.width = width # Maximum row and col. Defaults for user metrics. May be overridden self.mrow = row + height + 2 # in subclass. Allow for border. self.mcol = col + width + 2 self.visible = True # Used by ButtonList class for invisible buttons self.draw = True # Signals that obect must be redrawn self._value = value # Current colors if fgcolor is None: fgcolor = writer.fgcolor if bgcolor is None: bgcolor = writer.bgcolor if bdcolor is None: bdcolor = fgcolor self.fgcolor = fgcolor self.bgcolor = bgcolor # bdcolor is False if no border is to be drawn self.bdcolor = bdcolor # Default colors allow restoration after dynamic change self.def_fgcolor = fgcolor self.def_bgcolor = bgcolor self.def_bdcolor = bdcolor # has_border is True if a border was drawn self.has_border = False self.callback = dolittle # Value change callback self.args = [] def warning(self): print('Warning: attempt to create {} outside screen dimensions.'.format(self.__class__.__name__)) def value(self, val=None): # User method to get or set value if val is not None: if type(val) is float: val = min(max(val, 0.0), 1.0) if val != self._value: self._value = val self.draw = True # Ensure a redraw on next refresh self.callback(self, *self.args) return self._value # Some widgets (e.g. Dial) have an associated Label def text(self, text=None, invert=False, fgcolor=None, bgcolor=None, bdcolor=None): if hasattr(self, 'label'): self.label.value(text, invert, fgcolor, bgcolor, bdcolor) else: raise ValueError('Method {}.text does not exist.'.format(self.__class__.__name__)) # Called from subclass prior to populating framebuf with control def show(self, black=True): if self.screen != Screen.current_screen: # Can occur if a control's action is to change screen. return False # Subclass abandons self.draw = False self.draw_border() # Blank controls' space if self.visible: dev = display.usegrey(self._greyed_out) x = self.col y = self.row dev.fill_rect(x, y, self.width, self.height, BGCOLOR if black else self.bgcolor) return True # Called by Screen.show(). Draw background and bounding box if required. # Border is always 2 pixels wide, outside control's bounding box def draw_border(self): if self.screen is Screen.current_screen: dev = display.usegrey(self._greyed_out) x = self.col - 2 y = self.row - 2 w = self.width + 4 h = self.height + 4 if self.has_focus(): color = WHITE if hasattr(self, 'precision') and self.precision and self.prcolor is not None: color = self.prcolor dev.rect(x, y, w, h, color) self.has_border = True else: if isinstance(self.bdcolor, bool): # No border if self.has_border: # Border exists: erase it dev.rect(x, y, w, h, BGCOLOR) self.has_border = False elif self.bdcolor: # Border is required dev.rect(x, y, w, h, self.bdcolor) self.has_border = True def overlaps(self, xa, ya, xb, yb): # Args must be sorted: xb > xa and yb > ya x0 = self.col y0 = self.row x1 = x0 + self.width y1 = y0 + self.height if (ya <= y1 and yb >= y0) and (xa <= x1 and xb >= x0): return True return False def _set_callbacks(self, cb, args): # Runs when value changes. self.callback = cb self.args = args def has_focus(self): if self.active: cs = Screen.current_screen if (cso := cs.selected_obj) is not None: return cs.lstactive[cso] is self return False def greyed_out(self, val=None): if val is not None and self.active and self._greyed_out != val: self._greyed_out = val if self.screen is Screen.current_screen: display.usegrey(val) self.draw_border() self.show() return self._greyed_out # Button press methods. Called from Screen if object not greyed out. # For subclassing if specific behaviour is required. def do_sel(self): # Select button was pushed pass def unsel(self): # Select button was released pass def enter(self): # Control has acquired focus pass def leave(self): # Control has lost focus pass # Optional methods. Implement for controls which respond to up and down. # No dummy methods as these would prevent "first" and "last" focus movement # when current control has focus but is inactive. # def do_up(self, button) # def do_down(self, button) # A LinearIO widget uses the up and down buttons to vary a float. Such widgets # have do_up and do_down methods which adjust the control's value in a # time-dependent manner. class LinearIO(Widget): def __init__(self, writer, row, col, height, width, fgcolor, bgcolor, bdcolor, value=None, active=True, prcolor=False, min_delta=0.01, max_delta=0.1): self.min_delta = min_delta self.max_delta = max_delta super().__init__(writer, row, col, height, width, fgcolor, bgcolor, bdcolor, value, active) # Handle variable precision. Start normal self.precision = False self.do_precision = prcolor is not False if self.do_precision: # Subclass supports precision mode # 1 sec long press to set precise self.lpd = Delay_ms(self.precise, (True,)) # Precision mode can only be entered when the active control has focus. # In this state it will have a white border. By default this turns yellow # but subclass can be defeat this with WHITE or another color self.prcolor = YELLOW if prcolor is None else prcolor def do_up(self, button): asyncio.create_task(self.btnhan(button, 1)) def do_down(self, button): asyncio.create_task(self.btnhan(button, -1)) # Handle increase and decrease buttons. Redefined by textbox.py, scale_log.py async def btnhan(self, button, up): if self.precision: d = self.min_delta * 0.1 maxd = self.max_delta else: d = self.min_delta maxd = d * 4 # Why move fast in precision mode? self.value(self.value() + up * d) t = ticks_ms() while not button(): await asyncio.sleep_ms(0) # Quit fast on button release if ticks_diff(ticks_ms(), t) > 500: # Button was held down d = min(maxd, d * 2) self.value(self.value() + up * d) t = ticks_ms() def precise(self, v): # Timed out while button pressed self.precision = v self.draw = True def do_sel(self): # Select button was pushed if self.do_precision: # Subclass handles precision mode if self.precision: # Already in mode self.precise(False) else: # Require a long press to enter mode self.lpd.trigger() def unsel(self): # Select button was released self.do_precision and self.lpd.stop() def leave(self): # Control has lost focus self.precise(False)