""" The MIT License (MIT) Copyright (c) 2023 Arduino SA Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Basic example usage: import time from bmm150 import BMM150 from machine import Pin, SPI, I2C # Init in I2C mode. imu = BMM150(I2C(1, scl=Pin(15), sda=Pin(14))) # Or init in SPI mode. # TODO: Not supported yet. # imu = BMM150(SPI(5), cs=Pin(10)) while (True): print('magnetometer: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*imu.magnet())) time.sleep_ms(100) """ import array import time from micropython import const _DEFAULT_ADDR = const(0x10) _CHIP_ID = const(0x40) _DATA = const(0x42) _POWER = const(0x4B) _OPMODE = const(0x4C) _INT_STATUS = const(0x4A) _TRIM_X1 = const(0x5D) _TRIM_Y1 = const(0x5E) _TRIM_Z4_LSB = const(0x62) _TRIM_Z2_LSB = const(0x68) _XYAXES_FLIP = const(-4096) _ZHAXES_FLIP = const(-16384) _ODR = const((10, 2, 6, 8, 15, 20, 25, 30)) class BMM150: def __init__( self, bus, cs=None, address=_DEFAULT_ADDR, magnet_odr=30, ): """Initalizes the Magnetometer. bus: IMU bus address: I2C address (in I2C mode). cs: SPI CS pin (in SPI mode). magnet_odr: (2, 6, 8, 10, 15, 20, 25, 30) """ self.bus = bus self.cs = cs self.address = address self._use_i2c = hasattr(self.bus, "readfrom_mem") # Sanity checks if not self._use_i2c: raise ValueError("SPI mode is not supported") if magnet_odr not in _ODR: raise ValueError("Invalid sampling rate: %d" % magnet_odr) # Perform soft reset, and power on. self._write_reg(_POWER, 0x83) time.sleep_ms(10) if self._read_reg(_CHIP_ID) != 0x32: raise OSError("No BMM150 device was found at address 0x%x" % (self.address)) # Configure the device. # ODR | OP: Normal mode self._write_reg(_OPMODE, _ODR.index(magnet_odr) << 3) # Read trim registers. trim_x1y1 = self._read_reg(_TRIM_X1, 2) trim_xyz_data = self._read_reg(_TRIM_Z4_LSB, 4) trim_xy1xy2 = self._read_reg(_TRIM_Z2_LSB, 10) self.trim_x1 = trim_x1y1[0] self.trim_y1 = trim_x1y1[1] self.trim_x2 = trim_xyz_data[2] self.trim_y2 = trim_xyz_data[3] self.trim_z1 = (trim_xy1xy2[3] << 8) | trim_xy1xy2[2] self.trim_z2 = (trim_xy1xy2[1] << 8) | trim_xy1xy2[0] self.trim_z3 = (trim_xy1xy2[7] << 8) | trim_xy1xy2[6] self.trim_z4 = (trim_xyz_data[1] << 8) | trim_xyz_data[0] self.trim_xy1 = trim_xy1xy2[9] self.trim_xy2 = trim_xy1xy2[8] self.trim_xyz1 = ((trim_xy1xy2[5] & 0x7F) << 8) | trim_xy1xy2[4] # Allocate scratch buffer. self.scratch = memoryview(array.array("h", [0, 0, 0, 0])) def _read_reg(self, reg, size=1): buf = self.bus.readfrom_mem(self.address, reg, size) if size == 1: return int(buf[0]) return buf def _read_reg_into(self, reg, buf): self.bus.readfrom_mem_into(self.address, reg, buf) def _write_reg(self, reg, val): self.bus.writeto_mem(self.address, reg, bytes([val])) def _compensate_x(self, raw, hall): """Compensation equation ported from C driver""" x = 0 if raw != _XYAXES_FLIP: x0 = self.trim_xyz1 * 16384 / hall x = x0 - 16384 x1 = (self.trim_xy2) * (x**2 / 268435456) x2 = x1 + x * (self.trim_xy1) / 16384 x3 = (self.trim_x2) + 160 x4 = raw * ((x2 + 256) * x3) x = ((x4 / 8192) + (self.trim_x1 * 8)) / 16 return x def _compensate_y(self, raw, hall): """Compensation equation ported from C driver""" y = 0 if raw != _XYAXES_FLIP: y0 = self.trim_xyz1 * 16384 / hall y = y0 - 16384 y1 = self.trim_xy2 * (y**2 / 268435456) y2 = y1 + y * self.trim_xy1 / 16384 y3 = self.trim_y2 + 160 y4 = raw * ((y2 + 256) * y3) y = ((y4 / 8192) + (self.trim_y1 * 8)) / 16 return y def _compensate_z(self, raw, hall): """Compensation equation ported from C driver""" z = 0 if raw != _ZHAXES_FLIP: z0 = raw - self.trim_z4 z1 = hall - self.trim_xyz1 z2 = self.trim_z3 * z1 z3 = (self.trim_z1 * hall) / 32768 z4 = self.trim_z2 + z3 z5 = (z0 * 131072) - z2 z = (z5 / (z4 * 4)) / 16 return z def magnet_raw(self): for i in range(10): self._read_reg_into(_DATA, self.scratch) if self.scratch[3] & 0x1: return ( self.scratch[0] >> 3, self.scratch[1] >> 3, self.scratch[2] >> 1, self.scratch[3] >> 2, ) time.sleep_ms(30) raise OSError("Data not ready") def magnet(self): """Returns magnetometer vector.""" x, y, z, h = self.magnet_raw() return (self._compensate_x(x, h), self._compensate_y(y, h), self._compensate_z(z, h))