/******************************************************************************* * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman * Copyright (c) 2018 Terry Moore, MCCI * * Permission is hereby granted, free of charge, to anyone * obtaining a copy of this document and accompanying files, * to do whatever they want with them without any restriction, * including, but not limited to, copying, modification and redistribution. * NO WARRANTY OF ANY KIND IS PROVIDED. * * This example sends a valid LoRaWAN packet with payload "Hello, * world!", using frequency and encryption settings matching those of * the The Things Network. It's pre-configured for the Adafruit * Feather M0 LoRa. * *******************************************************************************/ /******************************************************************************* * * For Helium developers, follow the Arduino Quickstart guide: * https://developer.helium.com/device/arduino-quickstart * TLDR: register your device on the console: * https://console.helium.com/devices * * The App EUI (as lsb) and App Key (as msb) get inserted below. * *******************************************************************************/ #include #include #include #include #include #include #include #include // This is the "App EUI" in Helium. Make sure it is little-endian (lsb). static const u1_t PROGMEM APPEUI[8] = {FILL_ME_IN}; void os_getArtEui(u1_t *buf) { memcpy_P(buf, APPEUI, 8); } // This should also be in little endian format // These are user configurable values and Helium console permits anything static const u1_t PROGMEM DEVEUI[8] = {FILL_ME_IN}; void os_getDevEui(u1_t *buf) { memcpy_P(buf, DEVEUI, 8); } // This is the "App Key" in Helium. It is big-endian (msb). static const u1_t PROGMEM APPKEY[16] = {FILL_ME_IN}; void os_getDevKey(u1_t *buf) { memcpy_P(buf, APPKEY, 16); } static uint8_t mydata[] = "Hello, world!"; static osjob_t sendjob; // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = 60; // Pin mapping // // Adafruit BSPs are not consistent -- m0 express defs ARDUINO_SAMD_FEATHER_M0, // m0 defs ADAFRUIT_FEATHER_M0 // #if defined(ARDUINO_SAMD_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0) // Pin mapping for Adafruit Feather M0 LoRa, etc. const lmic_pinmap lmic_pins = { .nss = 8, .rxtx = LMIC_UNUSED_PIN, .rst = 4, .dio = {3, 6, LMIC_UNUSED_PIN}, .rxtx_rx_active = 0, .rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB .spi_freq = 8000000, }; #elif defined(ARDUINO_AVR_FEATHER32U4) // Pin mapping for Adafruit Feather 32u4 LoRa, etc. // Just like Feather M0 LoRa, but uses SPI at 1MHz; and that's only // because MCCI doesn't have a test board; probably higher frequencies // will work. const lmic_pinmap lmic_pins = { .nss = 8, .rxtx = LMIC_UNUSED_PIN, .rst = 4, .dio = {7, 6, LMIC_UNUSED_PIN}, .rxtx_rx_active = 0, .rssi_cal = 8, // LBT cal for the Adafruit Feather 32U4 LoRa, in dB .spi_freq = 1000000, }; #elif defined(ARDUINO_CATENA_4551) // Pin mapping for Murata module / Catena 4551 const lmic_pinmap lmic_pins = { .nss = 7, .rxtx = 29, .rst = 8, .dio = { 25, // DIO0 (IRQ) is D25 26, // DIO1 is D26 27, // DIO2 is D27 }, .rxtx_rx_active = 1, .rssi_cal = 10, .spi_freq = 8000000 // 8MHz }; #elif defined(MCCI_CATENA_4610) #include "arduino_lmic_hal_boards.h" const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Catena4610(); #elif defined(ARDUINO_DISCO_L072CZ_LRWAN1) const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Disco_L072cz_Lrwan1(); #else #error "Unknown target" #endif void onEvent(ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch (ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOIN_TXCOMPLETE: Serial.println(F("EV_JOIN_TXCOMPLETE")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); { u4_t netid = 0; devaddr_t devaddr = 0; u1_t nwkKey[16]; u1_t artKey[16]; LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey); Serial.print("netid: "); Serial.println(netid, DEC); Serial.print("devaddr: "); Serial.println(devaddr, HEX); Serial.print("artKey: "); for (size_t i = 0; i < sizeof(artKey); ++i) { if (i != 0) Serial.print("-"); Serial.print(artKey[i], HEX); } Serial.println(""); Serial.print("nwkKey: "); for (size_t i = 0; i < sizeof(nwkKey); ++i) { if (i != 0) Serial.print("-"); Serial.print(nwkKey[i], HEX); } Serial.println(""); } // Disable link check validation (automatically enabled // during join, but because slow data rates change max TX // size, we don't use it in this example. LMIC_setLinkCheckMode(0); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_RFU1: || Serial.println(F("EV_RFU1")); || break; */ case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.println(F("Received ")); Serial.println(LMIC.dataLen); Serial.println(F(" bytes of payload")); } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_SCAN_FOUND: || Serial.println(F("EV_SCAN_FOUND")); || break; */ case EV_TXSTART: Serial.println(F("EV_TXSTART")); break; default: Serial.print(F("Unknown event: ")); Serial.println((unsigned)ev); break; } } void do_send(osjob_t *j) { // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { // Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, mydata, sizeof(mydata) - 1, 0); Serial.println(F("Packet queued")); } // Next TX is scheduled after TX_COMPLETE event. } void setup() { delay(5000); while (!Serial) ; Serial.begin(9600); Serial.println(F("Starting")); #if defined(ARDUINO_DISCO_L072CZ_LRWAN1) SPI.setMOSI(RADIO_MOSI_PORT); SPI.setMISO(RADIO_MISO_PORT); SPI.setSCLK(RADIO_SCLK_PORT); SPI.setSSEL(RADIO_NSS_PORT); // SPI.begin(); #endif #ifdef VCC_ENABLE // For Pinoccio Scout boards pinMode(VCC_ENABLE, OUTPUT); digitalWrite(VCC_ENABLE, HIGH); delay(1000); #endif // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); // allow much more clock error than the X/1000 default. See: // https://github.com/mcci-catena/arduino-lorawan/issues/74#issuecomment-462171974 // https://github.com/mcci-catena/arduino-lmic/commit/42da75b56#diff-16d75524a9920f5d043fe731a27cf85aL633 // the X/1000 means an error rate of 0.1%; the above issue discusses using // values up to 10%. so, values from 10 (10% error, the most lax) to 1000 // (0.1% error, the most strict) can be used. LMIC_setClockError(1 * MAX_CLOCK_ERROR / 40); LMIC_setLinkCheckMode(0); LMIC_setDrTxpow(DR_SF8, 20); // Sub-band 2 - Helium Network LMIC_selectSubBand(1); // zero indexed // Start job (sending automatically starts OTAA too) do_send(&sendjob); } void loop() { os_runloop_once(); } namespace Arduino_LMIC { class HalConfiguration_Disco_L072cz_Lrwan1_t : public HalConfiguration_t { public: enum DIGITAL_PINS : uint8_t { PIN_SX1276_NSS = 37, PIN_SX1276_NRESET = 33, PIN_SX1276_DIO0 = 38, PIN_SX1276_DIO1 = 39, PIN_SX1276_DIO2 = 40, PIN_SX1276_RXTX = 21, }; virtual bool queryUsingTcxo(void) override { return false; }; }; // save some typing by bringing the pin numbers into scope static HalConfiguration_Disco_L072cz_Lrwan1_t myConfig; static const HalPinmap_t myPinmap = { .nss = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NSS, .rxtx = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_RXTX, .rst = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NRESET, .dio = { HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO0, HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO1, HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO2, }, .rxtx_rx_active = 1, .rssi_cal = 10, .spi_freq = 8000000, /* 8MHz */ .pConfig = &myConfig}; }; // end namespace Arduino_LMIC