Merge pull request #24 from helium/kent-williams/migrate-disco-gnss-example

Migrate B-L072Z-LRWAN1 GNSS Example to New Arduino Core
pull/27/head
Kent Williams 2020-06-02 15:25:50 -07:00 zatwierdzone przez GitHub
commit ccd3bbb2a1
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: 4AEE18F83AFDEB23
2 zmienionych plików z 145 dodań i 365 usunięć

Wyświetl plik

@ -1,24 +1,7 @@
# ST B-L072Z-LRWAN1 - GNSS Example
# ST B-L072Z-LRWAN1 - Cayenne GNSS Example
This example demonstrates sending GNSS data in [CayenneLPP](https://developers.mydevices.com/cayenne/docs/lora/#lora-cayenne-low-power-payload) format, using a B-L072Z-LRWAN1 development board with a X-NUCLEO-GNSS1A1 expansion shield, to the myDevices Cayenne dashboard. For more information on adding your device to the Helium network, visit our quickstart guide [here](https://developer.helium.com/console/quickstart). For more information on adding your device to myDevices Cayenne, visit our guide [here](https://developer.helium.com/console/integrations/mydevices-cayenne-integration).
## Required Arduino Libraries
From the Arduino IDE, open the Library Manager (Sketch->Include Library->Manage Libraries). In the search box, type the library name below and install the latest version.
[MCCI Arduino LoRaWAN Library](https://github.com/mcci-catena/arduino-lmic)
[CayenneLPP](https://github.com/ElectronicCats/CayenneLPP)
[X-NUCLEO-GNSS1A1](https://github.com/stm32duino/X-NUCLEO-GNSS1A1)
## Required Arduino Board Support
### B-L072Z-LRWAN1 - ST STM32L0 Discovery kit
Install board support package, find instructions [here](https://github.com/stm32duino/Arduino_Core_STM32#getting-started).
Arduino IDE:
1. Select Tools -> Board: -> Discovery
2. Select Tools -> Board part number: -> Discovery L072Z-LRWAN1
## Required Hardware
### B-L072Z-LRWAN1 - ST STM32L0 Discovery kit
@ -30,11 +13,38 @@ Arduino IDE:
[X-NUCLEO-GNSS1A1 Product Page](https://www.st.com/en/ecosystems/x-nucleo-gnss1a1.html)
[X-NUCLEO-GNSS1A1 User Manual](https://www.st.com/resource/en/user_manual/dm00453103-getting-started-with-the-xnucleognss1a1-expansion-board-based-on-teseoliv3f-tiny-gnss-module-for-stm32-nucleo-stmicroelectronics.pdf)
## Programming (Uploading Method):
#### STM32CubeProgrammer(SWD)
Will use onboard ST-Link(Flasher/Debugger) to upload sketch.
Download and Install required utility from ST [here](https://www.st.com/en/development-tools/stm32cubeprog.html).
## Required Driver (Windows Only)
Download driver [here](https://www.st.com/en/development-tools/stsw-link009.html).
## Required Arduino Libraries
From the Arduino IDE, open the Library Manager (Sketch->Include Library->Manage Libraries). In the search box, type the library name below and install the latest version.
[CayenneLPP](https://github.com/ElectronicCats/CayenneLPP)
[X-NUCLEO-GNSS1A1](https://github.com/stm32duino/X-NUCLEO-GNSS1A1)
## Required Board Support
### Arduino Core for STM32L0
Arduino IDE:
Select Tools -> Upload Method -> STM32CubeProgrammer(SWD)
1. Navigate to (File > Preferences)
Find the section at the bottom called Additional Boards Manager URLs:
2. Add the URL below to the list and click ok to close the preferences.
```
https://grumpyoldpizza.github.io/ArduinoCore-stm32l0/package_stm32l0_boards_index.json
```
![arduino_preferences](https://i.gyazo.com/148c4bc3646aaf71f8d9a0499c82fec4.png)
3. Open Boards Manager: Select Tools > Board: > Boards Manager...
4. Search for "Tlera Corp STM32L0 Boards"
5. Select the newest version and install.
![arduino_board_support](https://i.gyazo.com/216457ad64b8f85016d1b6d7cc6df044.png)
## Programming (Uploading):
Arduino IDE:
1. Select Board: Tools > Board: > B-L072Z-LRWAN1
2. Select Port: Tools > Port > COM# or /dev/ttyACM#(B-L072Z-LRWAN1)
3. Upload Sketch: Select > Upload
4. (Optional) View Serial Debug Output: Tools > Serial Monitor > 9600 baud

Wyświetl plik

@ -1,31 +1,28 @@
#include <MicroNMEA.h>
#include <SPI.h>
#include <arduino_lmic.h>
#include <arduino_lmic_hal_boards.h>
#include <arduino_lmic_hal_configuration.h>
#include <arduino_lmic_lorawan_compliance.h>
#include <arduino_lmic_user_configuration.h>
#include <hal/hal.h>
#include <lmic.h>
#include "LoRaWAN.h"
#include "TimerMillis.h"
#include <CayenneLPP.h>
#include <MicroNMEA.h>
const char *devEui = "FILL_ME_IN";
const char *appEui = "FILL_ME_IN";
const char *appKey = "FILL_ME_IN";
#define RESET_PIN 7
const uint32_t TX_INTERVAL = 60000; // 60 Seconds
TimerMillis timer_send;
// Sensors
float longitude_mdeg;
float latitude_mdeg;
long alt;
// Define Serial1 for STM32 Nucleo boards
#ifdef ARDUINO_ARCH_STM32
HardwareSerial Serial1(PA10, PA9);
#endif
#define RESET_PIN 7
// Refer to serial devices by use
HardwareSerial &console = Serial;
HardwareSerial &gps = Serial1;
CayenneLPP lpp(51);
static volatile bool uplink_attempted;
// MicroNMEA library structures
char nmeaBuffer[100];
MicroNMEA nmea(nmeaBuffer, sizeof(nmeaBuffer));
@ -51,307 +48,10 @@ void gpsHardwareReset() {
delay(2000);
}
// This is the "App EUI" in Helium. Make sure it is little-endian (lsb).
static const u1_t PROGMEM APPEUI[8] = {FILL_ME_IN};
void os_getArtEui(u1_t *buf) { memcpy_P(buf, APPEUI, 8); }
// This should also be in little endian format
// These are user configurable values and Helium console permits anything
static const u1_t PROGMEM DEVEUI[8] = {FILL_ME_IN};
void os_getDevEui(u1_t *buf) { memcpy_P(buf, DEVEUI, 8); }
// This is the "App Key" in Helium. It is big-endian (msb).
static const u1_t PROGMEM APPKEY[16] = {FILL_ME_IN};
void os_getDevKey(u1_t *buf) { memcpy_P(buf, APPKEY, 16); }
CayenneLPP lpp(51);
static osjob_t sendjob;
void do_send(osjob_t *j);
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping
//
// Adafruit BSPs are not consistent -- m0 express defs ARDUINO_SAMD_FEATHER_M0,
// m0 defs ADAFRUIT_FEATHER_M0
//
#if defined(ARDUINO_SAMD_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0)
// Pin mapping for Adafruit Feather M0 LoRa, etc.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {3, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB
.spi_freq = 8000000,
};
#elif defined(ARDUINO_AVR_FEATHER32U4)
// Pin mapping for Adafruit Feather 32u4 LoRa, etc.
// Just like Feather M0 LoRa, but uses SPI at 1MHz; and that's only
// because MCCI doesn't have a test board; probably higher frequencies
// will work.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {7, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather 32U4 LoRa, in dB
.spi_freq = 1000000,
};
#elif defined(ARDUINO_CATENA_4551)
// Pin mapping for Murata module / Catena 4551
const lmic_pinmap lmic_pins = {
.nss = 7,
.rxtx = 29,
.rst = 8,
.dio =
{
25, // DIO0 (IRQ) is D25
26, // DIO1 is D26
27, // DIO2 is D27
},
.rxtx_rx_active = 1,
.rssi_cal = 10,
.spi_freq = 8000000 // 8MHz
};
#elif defined(MCCI_CATENA_4610)
#include "arduino_lmic_hal_boards.h"
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Catena4610();
#elif defined(ARDUINO_DISCO_L072CZ_LRWAN1)
#include "arduino_lmic_hal_boards.h"
// Pin mapping Discovery
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Disco_L072cz_Lrwan1();
#else
#error "Unknown target"
#endif
void printHex2(unsigned v) {
v &= 0xff;
if (v < 16)
Serial.print('0');
Serial.print(v, HEX);
}
void onEvent(ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch (ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
{
u4_t netid = 0;
devaddr_t devaddr = 0;
u1_t nwkKey[16];
u1_t artKey[16];
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
Serial.print("netid: ");
Serial.println(netid, DEC);
Serial.print("devaddr: ");
Serial.println(devaddr, HEX);
Serial.print("AppSKey: ");
for (size_t i = 0; i < sizeof(artKey); ++i) {
if (i != 0)
Serial.print("-");
printHex2(artKey[i]);
}
Serial.println("");
Serial.print("NwkSKey: ");
for (size_t i = 0; i < sizeof(nwkKey); ++i) {
if (i != 0)
Serial.print("-");
printHex2(nwkKey[i]);
}
Serial.println();
}
// Disable link check validation (automatically enabled
// during join, but because slow data rates change max TX
// size, we don't use it in this example.
LMIC_setLinkCheckMode(0);
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_RFU1:
|| DEBUG_PRINTLN(F("EV_RFU1"));
|| break;
*/
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL),
do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_SCAN_FOUND:
|| DEBUG_PRINTLN(F("EV_SCAN_FOUND"));
|| break;
*/
case EV_TXSTART:
Serial.println(F("EV_TXSTART"));
break;
case EV_TXCANCELED:
Serial.println(F("EV_TXCANCELED"));
break;
case EV_RXSTART:
/* do not print anything -- it wrecks timing */
break;
case EV_JOIN_TXCOMPLETE:
Serial.println(F("EV_JOIN_TXCOMPLETE: no JoinAccept"));
break;
default:
Serial.print(F("Unknown event: "));
Serial.println((unsigned)ev);
break;
}
}
void readGPS() {
// If a message is received, print all the info
if (ppsTriggered) {
ppsTriggered = false;
ledState = !ledState;
digitalWrite(LED_BUILTIN, ledState);
// Clear Payload
lpp.reset();
// Output GPS information from previous second
Serial.print("Valid fix: ");
Serial.println(nmea.isValid() ? "yes" : "no");
Serial.print("Nav. system: ");
if (nmea.getNavSystem())
Serial.println(nmea.getNavSystem());
else
Serial.println("none");
Serial.print("Num. satellites: ");
Serial.println(nmea.getNumSatellites());
Serial.print("HDOP: ");
Serial.println(nmea.getHDOP() / 10., 1);
Serial.print("Date/time: ");
Serial.print(nmea.getYear());
Serial.print('-');
Serial.print(int(nmea.getMonth()));
Serial.print('-');
Serial.print(int(nmea.getDay()));
Serial.print('T');
Serial.print(int(nmea.getHour()));
Serial.print(':');
Serial.print(int(nmea.getMinute()));
Serial.print(':');
Serial.println(int(nmea.getSecond()));
latitude_mdeg = nmea.getLatitude();
longitude_mdeg = nmea.getLongitude();
Serial.print("Latitude (deg): ");
Serial.println(latitude_mdeg / 1000000., 6);
Serial.print("Longitude (deg): ");
Serial.println(longitude_mdeg / 1000000., 6);
// long alt;
Serial.print("Altitude (m): ");
if (nmea.getAltitude(alt))
Serial.println(alt / 1000., 3);
else
Serial.println("not available");
lpp.addGPS(1, latitude_mdeg / 1000000, longitude_mdeg / 1000000,
alt / 1000);
Serial.print("Speed: ");
Serial.println(nmea.getSpeed() / 1000., 3);
Serial.print("Course: ");
Serial.println(nmea.getCourse() / 1000., 3);
Serial.println("-----------------------");
nmea.clear();
}
// While the message isn't complete
while (!ppsTriggered && gps.available()) {
// Fetch the character one by one
char c = gps.read();
Serial.print(c);
// Pass the character to the library
nmea.process(c);
}
}
void do_send(osjob_t *j) {
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup(void) {
void setupGPS() {
delay(3000);
console.begin(115200); // console
Serial.println("Starting #IoTForGood GPS Example...");
Serial.println("Starting GPS Example...");
gps.begin(9600); // gps
@ -381,37 +81,107 @@ void setup(void) {
pinMode(6, INPUT);
attachInterrupt(digitalPinToInterrupt(6), ppsHandler, RISING);
}
#if defined(ARDUINO_DISCO_L072CZ_LRWAN1)
SPI.setMOSI(RADIO_MOSI_PORT);
SPI.setMISO(RADIO_MISO_PORT);
SPI.setSCLK(RADIO_SCLK_PORT);
SPI.setSSEL(RADIO_NSS_PORT);
#endif
void readGPS() {
// If a message is received
if (ppsTriggered) {
ppsTriggered = false;
ledState = !ledState;
digitalWrite(LED_BUILTIN, ledState);
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Clear Payload
lpp.reset();
// allow much more clock error than the X/1000 default. See:
// https://github.com/mcci-catena/arduino-lorawan/issues/74#issuecomment-462171974
// https://github.com/mcci-catena/arduino-lmic/commit/42da75b56#diff-16d75524a9920f5d043fe731a27cf85aL633
// the X/1000 means an error rate of 0.1%; the above issue discusses using
// values up to 10%. so, values from 10 (10% error, the most lax) to 1000
// (0.1% error, the most strict) can be used.
LMIC_setClockError(1 * MAX_CLOCK_ERROR / 40);
latitude_mdeg = nmea.getLatitude();
longitude_mdeg = nmea.getLongitude();
nmea.getAltitude(alt);
LMIC_setLinkCheckMode(0);
LMIC_setDrTxpow(DR_SF7, 14);
// Sub-band 2 - Helium Network
LMIC_selectSubBand(1); // zero indexed
lpp.addGPS(1, latitude_mdeg / 1000000, longitude_mdeg / 1000000,
alt / 1000);
// Start job (sending automatically starts OTAA too)
do_send(&sendjob);
nmea.clear();
}
// While the message isn't complete
while (!ppsTriggered && gps.available()) {
// Fetch the character one by one
char c = gps.read();
// Serial.print(c);
// Pass the character to the library
nmea.process(c);
}
}
void async_timer_send() {
if (LoRaWAN.joined() && !LoRaWAN.busy()) {
// Send Packet
LoRaWAN.sendPacket(1, lpp.getBuffer(), lpp.getSize());
uplink_attempted = true;
}
}
void setup(void) {
setupGPS();
Serial.begin(9600);
while (!Serial) {
}
// US Region
LoRaWAN.begin(US915);
// Helium SubBand
LoRaWAN.setSubBand(2);
// Disable Adaptive Data Rate
LoRaWAN.setADR(false);
// Set Data Rate 1 - Max Payload 53 Bytes
LoRaWAN.setDataRate(1);
// Device IDs and Key
LoRaWAN.joinOTAA(appEui, appKey, devEui);
Serial.println("JOIN( )");
while (!LoRaWAN.joined() && LoRaWAN.busy()) {
Serial.println("JOINING( )");
delay(5000);
}
Serial.println("JOINED( )");
// Start Continuous Uplink Timer
timer_send.start(async_timer_send, 0, TX_INTERVAL);
}
void loop(void) {
os_runloop_once();
if (uplink_attempted) {
Serial.print("TRANSMIT( ");
Serial.print("TimeOnAir: ");
Serial.print(LoRaWAN.getTimeOnAir());
Serial.print(", NextTxTime: ");
Serial.print(LoRaWAN.getNextTxTime());
Serial.print(", MaxPayloadSize: ");
Serial.print(LoRaWAN.getMaxPayloadSize());
Serial.print(", DR: ");
Serial.print(LoRaWAN.getDataRate());
Serial.print(", TxPower: ");
Serial.print(LoRaWAN.getTxPower(), 1);
Serial.print("dbm, UpLinkCounter: ");
Serial.print(LoRaWAN.getUpLinkCounter());
Serial.print(", DownLinkCounter: ");
Serial.print(LoRaWAN.getDownLinkCounter());
Serial.println(" )");
Serial.print("Latitude (deg): ");
Serial.print(latitude_mdeg / 1000000., 6);
Serial.print(" Longitude (deg): ");
Serial.print(longitude_mdeg / 1000000., 6);
Serial.print(" Altitude (m): ");
if (nmea.getAltitude(alt))
Serial.println(alt / 1000., 3);
else
Serial.println("not available");
uplink_attempted = false;
}
readGPS();
}
}