add feather m0 rfm95 example

pull/27/head
Kent Williams 2021-02-01 17:38:23 -08:00
rodzic 1fdb00718f
commit 436ab3def7
3 zmienionych plików z 374 dodań i 0 usunięć

Wyświetl plik

@ -0,0 +1,37 @@
# Adafruit Feather M0 RFM95 - DHT22 CayenneLPP Example
[Quickstart Guide](https://docs.helium.com/use-the-network/devices/development/adafruit-feather-m0-rfm95/adafruitio)
[Adafruit Feather M0 with RFM95 Product Page](https://www.adafruit.com/product/3178)
[Adafruit Feather M0 with RFM95 Datasheets & Files](https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/downloads).
## Required Arduino Libraries
### Important
Make sure you do not have other LMIC arduino libraries installed, otherwise you will experience
build errors. You can find your Arduino libraries for your operating system below, simply delete the directory if you would like to remove a library.
linux: /home/{user}/Arduino/libraries
windows: Documents/Arduino/libraries
mac os: Documents/Arduino/libraries
From the Arduino IDE, open the Library Manager (Sketch->Include Library->Manage Libraries). In the search box, type the library name below and install version `1.5.0+arduino-2`.
[IBM LMIC framework](https://github.com/matthijskooijman/arduino-lmic)
Next, search for and install both `CayenneLPP` and `DHT sensor library`
[CayenneLPP](https://github.com/ElectronicCats/CayenneLPP)
[DHT sensor library](https://github.com/adafruit/DHT-sensor-library)
### Required Configuration
This library requires that a config file be setup properly. After you have installed the `IBM LMIC framework` library, navigate to it's directory on your operating system found below. Next, replace the `config.h` file in this directory with this [config.h](https://github.com/helium/longfi-arduino/blob/master/Sparkfun-Pro-RF/longfi-us915/config.h) file.
linux: /home/{user}/Arduino/libraries/IBM_LMIC_framework/src/lmic
windows: Documents/Arduino/libraries/IBM_LMIC_framework/src/lmic
mac os: Documents/Arduino/libraries/IBM_LMIC_framework/src/lmic
## Required Arduino Board Support
1. Install Arduino SAMD Support, instructions [here](https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/using-with-arduino-ide#install-samd-support-6-5).
2. Install Adafruit SAMD Support, instructions [here](https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/using-with-arduino-ide#install-adafruit-samd-6-7).
3. (Windows 7 & 8 Only) Install drivers, instructions [here](https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-radio-module/using-with-arduino-ide#install-drivers-windows-7-and-8-only-6-11)

Wyświetl plik

@ -0,0 +1,83 @@
#ifndef _lmic_config_h_
#define _lmic_config_h_
// In the original LMIC code, these config values were defined on the
// gcc commandline. Since Arduino does not allow easily modifying the
// compiler commandline, use this file instead.
// #define CFG_eu868 1
#define CFG_us915 1
// This is the SX1272/SX1273 radio, which is also used on the HopeRF
// RFM92 boards.
//#define CFG_sx1272_radio 1
// This is the SX1276/SX1277/SX1278/SX1279 radio, which is also used on
// the HopeRF RFM95 boards.
#define CFG_sx1276_radio 1
// 16 μs per tick
// LMIC requires ticks to be 15.5μs - 100 μs long
#define US_PER_OSTICK_EXPONENT 4
#define US_PER_OSTICK (1 << US_PER_OSTICK_EXPONENT)
#define OSTICKS_PER_SEC (1000000 / US_PER_OSTICK)
// Set this to 1 to enable some basic debug output (using printf) about
// RF settings used during transmission and reception. Set to 2 to
// enable more verbose output. Make sure that printf is actually
// configured (e.g. on AVR it is not by default), otherwise using it can
// cause crashing.
#define LMIC_DEBUG_LEVEL 0
// Enable this to allow using printf() to print to the given serial port
// (or any other Print object). This can be easy for debugging. The
// current implementation only works on AVR, though.
//#define LMIC_PRINTF_TO Serial
// Any runtime assertion failures are printed to this serial port (or
// any other Print object). If this is unset, any failures just silently
// halt execution.
#define LMIC_FAILURE_TO Serial
// Uncomment this to disable all code related to joining
//#define DISABLE_JOIN
// Uncomment this to disable all code related to ping
//#define DISABLE_PING
// Uncomment this to disable all code related to beacon tracking.
// Requires ping to be disabled too
//#define DISABLE_BEACONS
// Uncomment these to disable the corresponding MAC commands.
// Class A
//#define DISABLE_MCMD_DCAP_REQ // duty cycle cap
//#define DISABLE_MCMD_DN2P_SET // 2nd DN window param
//#define DISABLE_MCMD_SNCH_REQ // set new channel
// Class B
//#define DISABLE_MCMD_PING_SET // set ping freq, automatically disabled by DISABLE_PING
//#define DISABLE_MCMD_BCNI_ANS // next beacon start, automatical disabled by DISABLE_BEACON
// In LoRaWAN, a gateway applies I/Q inversion on TX, and nodes do the
// same on RX. This ensures that gateways can talk to nodes and vice
// versa, but gateways will not hear other gateways and nodes will not
// hear other nodes. By uncommenting this macro, this inversion is
// disabled and this node can hear other nodes. If two nodes both have
// this macro set, they can talk to each other (but they can no longer
// hear gateways). This should probably only be used when debugging
// and/or when talking to the radio directly (e.g. like in the "raw"
// example).
//#define DISABLE_INVERT_IQ_ON_RX
// This allows choosing between multiple included AES implementations.
// Make sure exactly one of these is uncommented.
//
// This selects the original AES implementation included LMIC. This
// implementation is optimized for speed on 32-bit processors using
// fairly big lookup tables, but it takes up big amounts of flash on the
// AVR architecture.
// #define USE_ORIGINAL_AES
//
// This selects the AES implementation written by Ideetroon for their
// own LoRaWAN library. It also uses lookup tables, but smaller
// byte-oriented ones, making it use a lot less flash space (but it is
// also about twice as slow as the original).
#define USE_IDEETRON_AES
#endif // _lmic_config_h_

Wyświetl plik

@ -0,0 +1,254 @@
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network.
*
* This uses OTAA (Over-the-air activation), where where a DevEUI and
* application key is configured, which are used in an over-the-air
* activation procedure where a DevAddr and session keys are
* assigned/generated for use with all further communication.
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
* To use this sketch, first register your application and device with
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
* Multiple devices can use the same AppEUI, but each device has its own
* DevEUI and AppKey.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include <Adafruit_Sensor.h>
#include <DHT.h>
#include <DHT_U.h>
#include <CayenneLPP.h>
#define DHTPIN 12
#define DHTTYPE DHT22 // DHT 22 (AM2302)
DHT_Unified dht(DHTPIN, DHTTYPE);
// Init CayenneLPP Payload
CayenneLPP lpp(51);
// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t PROGMEM APPEUI[8]={ FILL_ME_IN };
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
// This should also be in little endian format, see above.
static const u1_t PROGMEM DEVEUI[8]={ FILL_ME_IN };
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from ttnctl can be copied as-is.
// The key shown here is the semtech default key.
static const u1_t PROGMEM APPKEY[16] = { FILL_ME_IN };
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 20;
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {3, 6, 2},
};
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
// Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0);
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Clear Payload
lpp.reset();
// Get temperature event and print its value.
sensors_event_t event;
dht.temperature().getEvent(&event);
if (isnan(event.temperature)) {
Serial.println(F("Error reading temperature!"));
}
else {
Serial.print(F("Temperature: "));
Serial.print(event.temperature);
Serial.println(F("°C"));
lpp.addTemperature(1, event.temperature);
}
// Get humidity event and print its value.
dht.humidity().getEvent(&event);
if (isnan(event.relative_humidity)) {
Serial.println(F("Error reading humidity!"));
}
else {
Serial.print(F("Humidity: "));
Serial.print(event.relative_humidity);
Serial.println(F("%"));
lpp.addRelativeHumidity(2, event.relative_humidity);
}
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
Serial.begin(9600);
Serial.println(F("Starting"));
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// Initialize DHT22.
dht.begin();
Serial.println(F("DHTxx Unified Sensor Example"));
// Print temperature sensor details.
sensor_t sensor;
dht.temperature().getSensor(&sensor);
Serial.println(F("------------------------------------"));
Serial.println(F("Temperature Sensor"));
Serial.print (F("Sensor Type: ")); Serial.println(sensor.name);
Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);
Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor_id);
Serial.print (F("Max Value: ")); Serial.print(sensor.max_value); Serial.println(F("°C"));
Serial.print (F("Min Value: ")); Serial.print(sensor.min_value); Serial.println(F("°C"));
Serial.print (F("Resolution: ")); Serial.print(sensor.resolution); Serial.println(F("°C"));
Serial.println(F("------------------------------------"));
// Print humidity sensor details.
dht.humidity().getSensor(&sensor);
Serial.println(F("Humidity Sensor"));
Serial.print (F("Sensor Type: ")); Serial.println(sensor.name);
Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);
Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor_id);
Serial.print (F("Max Value: ")); Serial.print(sensor.max_value); Serial.println(F("%"));
Serial.print (F("Min Value: ")); Serial.print(sensor.min_value); Serial.println(F("%"));
Serial.print (F("Resolution: ")); Serial.print(sensor.resolution); Serial.println(F("%"));
Serial.println(F("------------------------------------"));
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// allow much more clock error than the X/1000 default. See:
// https://github.com/mcci-catena/arduino-lorawan/issues/74#issuecomment-462171974
// https://github.com/mcci-catena/arduino-lmic/commit/42da75b56#diff-16d75524a9920f5d043fe731a27cf85aL633
// the X/1000 means an error rate of 0.1%; the above issue discusses using
// values up to 10%. so, values from 10 (10% error, the most lax) to 1000
// (0.1% error, the most strict) can be used.
LMIC_setClockError(1 * MAX_CLOCK_ERROR / 40);
// Sub-band 2 - Helium Network
LMIC_selectSubBand(1); // zero indexed
LMIC_setLinkCheckMode(0);
LMIC_setDrTxpow(DR_SF7, 14);
// Start job (sending automatically starts OTAA too)
do_send(&sendjob);
}
void loop() {
os_runloop_once();
}