Rahul 2023-07-22 14:37:08 +05:30 zatwierdzone przez GitHub
commit a42fe61ba9
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: 4AEE18F83AFDEB23
17 zmienionych plików z 379 dodań i 1555 usunięć

Wyświetl plik

@ -1,6 +1,6 @@
# linedraw
Convert images to vectorized line drawings for plotters.
![Alt text](./screenshots/1.png?raw=true "")
![Alt text](./docs/assets/1.png?raw=true "")
- Exports polyline-only svg file with optimized stroke order for plotters;
- Sketchy style powered by Perlin noise;
@ -9,44 +9,57 @@ Convert images to vectorized line drawings for plotters.
## Dependencies
Python 2 or 3, PIL/Pillow, numpy, OpenCV (Optional for better performance)
```shell
pip install -r requirements.txt
```
## Usage
Convert an image to line drawing and export .SVG format:
```shell
$ python linedraw.py -i input.jpg -o output.svg
python linedraw.py -i input.jpg -o output.svg
```
Command specs:
```
usage: linedraw.py [-h] [-i [INPUT_PATH]] [-o [OUTPUT_PATH]] [-b] [-nc] [-nh]
[--no_cv] [--hatch_size [HATCH_SIZE]]
[--contour_simplify [CONTOUR_SIMPLIFY]]
usage: linedraw.py [-h] [-i [INPUT_PATH]] [-o [OUTPUT_PATH]] [-r [RESOLUTION]] [-b] [-nc] [-nh] [--no-cv] [--hatch-size [HATCH_SIZE]] [--contour-simplify [CONTOUR_SIMPLIFY]] [-v]
[--save-settings]
Convert image to vectorized line drawing for plotters.
optional arguments:
options:
-h, --help show this help message and exit
-i [INPUT_PATH], --input [INPUT_PATH]
Input path
Input image path
-o [OUTPUT_PATH], --output [OUTPUT_PATH]
Output path.
-b, --show_bitmap Display bitmap preview.
-nc, --no_contour Don't draw contours.
-nh, --no_hatch Disable hatching.
--no_cv Don't use openCV.
--hatch_size [HATCH_SIZE]
Output image path
-r [RESOLUTION], --resolution [RESOLUTION]
Resolution of the output image
-b, --show-bitmap Display bitmap preview.
-nc, --no-contour Don't draw contours.
-nh, --no-hatch Disable hatching.
--no-cv Don't use openCV.
--hatch-size [HATCH_SIZE]
Patch size of hatches. eg. 8, 16, 32
--contour_simplify [CONTOUR_SIMPLIFY]
--contour-simplify [CONTOUR_SIMPLIFY]
Level of contour simplification. eg. 1, 2, 3
-v, --visualize Visualize the output using turtle
--save-settings To Save the settings to a json file
```
Python:
```python
import linedraw
linedraw.argument.resolution = 512 # set arguments
lines = linedraw.sketch("path/to/img.jpg") # return list of polylines, eg.
# [[(x,y),(x,y),(x,y)],[(x,y),(x,y),...],...]
linedraw.visualize(lines) # simulates plotter behavior
# draw the lines in order using turtle graphics.
# [[(x,y),(x,y),(x,y)],[(x,y),(x,y),...],...]
linedraw.visualize(lines) # simulates plotter behavior
# draw the lines in order using turtle graphics.
```
## Future Plans
1. Rasterised Output
2. GUI for the tool

Wyświetl plik

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 1.4 MiB

Po

Szerokość:  |  Wysokość:  |  Rozmiar: 1.4 MiB

Plik binarny nie jest wyświetlany.

Plik binarny nie jest wyświetlany.

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 463 KiB

Plik binarny nie jest wyświetlany.

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 526 KiB

Plik binarny nie jest wyświetlany.

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 112 KiB

Wyświetl plik

@ -0,0 +1 @@
from line_draw.helper import sketch

Wyświetl plik

@ -0,0 +1,29 @@
import json
class Default:
export_path = "output/out.svg"
show_bitmap = False
draw_contours = True
draw_hatch = True
no_cv = False
hatch_size = 16
contour_simplify = 2
resolution = 1024
save_settings = False
def save(self,settings_path):
print("Savings settings to a JSON file")
file = open(settings_path, 'w')
data = {
"resolution": self.resolution,
"show_bitmap": self.show_bitmap,
"draw_contours": self.draw_contours,
"draw_hatch": self.draw_hatch,
"use_opencv": not self.no_cv,
"hatch_size": self.hatch_size,
"contour_simplify": self.contour_simplify
}
json.dump(data,file)
file.close()
argument = Default()

235
line_draw/helper.py 100644
Wyświetl plik

@ -0,0 +1,235 @@
from PIL import Image, ImageOps, ImageDraw
import line_draw.perlin as perlin
from datetime import datetime
import os
from line_draw.filters import appmask, F_SobelX, F_SobelY
from line_draw.default import argument
from line_draw.util import distsum, is_image_file, extract_file_name_and_extension
from line_draw.strokesort import sortlines
def sketch(input_path, output_path:str):
IMAGE = None
if not is_image_file(input_path):
return print("Please provide the path for an image.")
out_file, out_ext = extract_file_name_and_extension(output_path)
if not out_file:
in_file, in_ext = extract_file_name_and_extension(input_path)
out_ext = '.svg'
if not output_path.endswith('/'):
output_path += '/'
output_path += in_file + out_ext
if out_ext != '.svg':
return print("Currently we can only save as svg file")
try:
IMAGE = Image.open(input_path)
except FileNotFoundError:
return print("The Input File wasn't found. Check Path")
width, height = IMAGE.size
IMAGE = IMAGE.convert("L")
IMAGE = ImageOps.autocontrast(IMAGE, 10)
lines = []
if argument.draw_contours:
lines += get_contours(IMAGE.resize((argument.resolution // argument.contour_simplify,
argument.resolution // argument.contour_simplify * height // width)))
if argument.draw_hatch:
lines += hatch(IMAGE.resize(
(argument.resolution // argument.hatch_size, argument.resolution // argument.hatch_size * height // width)))
lines = sortlines(lines)
if argument.show_bitmap:
disp = Image.new("RGB", (argument.resolution, argument.resolution * height // width), (255, 255, 255))
draw = ImageDraw.Draw(disp)
for l in lines:
draw.line(l, (0, 0, 0), 5)
disp.show()
# if out_ext != '.svg':
# now = datetime.now()
# svg_path = output_path.rsplit('/', 1)[0] + now.strftime("%Y%m%d%H%M%S%f") + '.svg'
# else:
# svg_path = output_path
file = open(output_path, 'w')
file.write(make_svg(lines))
file.close()
# if out_ext != '.svg':
# if not is_image_file(output_path):
# return "Output path is not an image path"
# rasterise_image(svg_path,output_path)
# os.remove(svg_path)
print(len(lines), "strokes.")
if argument.save_settings:
argument.save(os.path.dirname(output_path) + '/settings.json')
print("done.")
return lines
def get_contours(image):
print("Generating Contours....")
image = find_edges(image)
image_copy1 = image.copy()
image_copy2 = image.rotate(-90, expand=True).transpose(Image.FLIP_LEFT_RIGHT)
image_copy1_dots = get_dots(image_copy1)
image_copy1_contours = connect_dots(image_copy1_dots)
image_copy2_dots = get_dots(image_copy2)
image_copy2_contours = connect_dots(image_copy2_dots)
for i in range(len(image_copy2_contours)):
image_copy2_contours[1] = [(c[1], c[0]) for c in image_copy2_contours[i]]
contours = image_copy1_contours + image_copy2_contours
for i in range(len(contours)):
for j in range(len(contours)):
if len(contours[i]) > 0 and len(contours[j]) > 0:
if distsum(contours[j][0], contours[i][-1]) < 8:
contours[i] = contours[i] + contours[j]
contours[j] = []
for i in range(len(contours)):
contours[i] = [contours[i][j] for j in range(0, len(contours[i]), 8)]
contours = [c for c in contours if len(c) > 1]
for i in range(0, len(contours)):
contours[i] = [(v[0] * argument.contour_simplify, v[1] * argument.contour_simplify) for v in contours[i]]
for i in range(0, len(contours)):
for j in range(0, len(contours[i])):
contours[i][j] = int(contours[i][j][0] + 10 * perlin.noise(i * 0.5, j * 0.1, 1)), int(
contours[i][j][1] + 10 * perlin.noise(i * 0.5, j * 0.1, 2))
return contours
def find_edges(image):
print("Fining Edges....")
if argument.no_cv:
appmask(image, [F_SobelX, F_SobelY])
else:
import numpy as np
import cv2
image = np.array(image)
image = cv2.GaussianBlur(image, (3, 3), 0)
image = cv2.Canny(image, 100, 200)
image = Image.fromarray(image)
return image.point(lambda p: p > 128 and 255)
def get_dots(image):
print("Getting contour points...")
PX = image.load()
dots = []
width, height = image.size
for y in range(height - 1):
row = []
for x in range(1, width):
if PX[x, y] == 255:
if len(row) > 0:
if x - row[-1][0] == row[-1][-1] + 1:
row[-1] = (row[-1][0], row[-1][-1] + 1)
else:
row.append((x, 0))
else:
row.append((x, 0))
dots.append(row)
return dots
def connect_dots(dots):
print("Connecting contour points....")
contours = []
for y in range(len(dots)):
for x, v in dots[y]:
if v > -1:
if y == 0:
contours.append([(x, y)])
else:
closest = -1
cdist = 100
for x0, v0 in dots[y - 1]:
if abs(x0 - x) < cdist:
cdist = abs(x0 - x)
closest = x0
if cdist > 3:
contours.append([(x, y)])
else:
found = 0
for i in range(len(contours)):
if contours[i][-1] == (closest, y - 1):
contours[i].append((x, y,))
found = 1
break
if found == 0:
contours.append([(x, y)])
for c in contours:
if c[-1][1] < y - 1 and len(c) < 4:
contours.remove(c)
return contours
def hatch(image):
print("Hatching....")
PX = image.load()
width, height = image.size
lg1 = []
lg2 = []
for x0 in range(width):
for y0 in range(height):
x = x0 * argument.hatch_size
y = y0 * argument.hatch_size
if PX[x0, y0] > 144:
pass
elif PX[x0, y0] > 64:
lg1.append([(x, y + argument.hatch_size / 4), (x + argument.hatch_size, y + argument.hatch_size / 4)])
elif PX[x0, y0] > 16:
lg1.append([(x, y + argument.hatch_size / 4), (x + argument.hatch_size, y + argument.hatch_size / 4)])
lg2.append([(x + argument.hatch_size, y), (x, y + argument.hatch_size)])
else:
lg1.append([(x, y + argument.hatch_size / 4), (x + argument.hatch_size, y + argument.hatch_size / 4)])
lg1.append([(x, y + argument.hatch_size / 2 + argument.hatch_size / 4),
(x + argument.hatch_size, y + argument.hatch_size / 2 + argument.hatch_size / 4)])
lg2.append([(x + argument.hatch_size, y), (x, y + argument.hatch_size)])
lines = [lg1, lg2]
for k in range(0, len(lines)):
for i in range(0, len(lines[k])):
for j in range(0, len(lines[k])):
if lines[k][i] != [] and lines[k][j] != []:
if lines[k][i][-1] == lines[k][j][0]:
lines[k][i] = lines[k][i] + lines[k][j][1:]
lines[k][j] = []
lines[k] = [l for l in lines[k] if len(l) > 0]
lines = lines[0] + lines[1]
for i in range(0, len(lines)):
for j in range(0, len(lines[i])):
lines[i][j] = int(lines[i][j][0] + argument.hatch_size * perlin.noise(i * 0.5, j * 0.1, 1)), int(
lines[i][j][1] + argument.hatch_size * perlin.noise(i * 0.5, j * 0.1, 2)) - j
return lines
def make_svg(lines):
print("Generating SVG file....")
out = '<svg xmlns="http://www.w3.org/2000/svg" version="1.1">'
for l in lines:
l = ",".join([str(p[0] * 0.5) + "," + str(p[1] * 0.5) for p in l])
out += '<polyline points="' + l + '" stroke="black" stroke-width="2" fill="none" />\n'
out += '</svg>'
return out
def rasterise_image(svg_image, raster_image):
print("Converting image....")
# to be implemented

Wyświetl plik

@ -1,6 +1,6 @@
from random import *
from PIL import Image, ImageDraw, ImageOps
from util import *
from line_draw.util import *
def sortlines(lines):
@ -38,8 +38,8 @@ def visualize(lines):
turtle.mainloop()
if __name__=="__main__":
import linedraw
import line_draw
#linedraw.draw_hatch = False
lines = linedraw.sketch("Lenna")
lines = line_draw.sketch("Lenna")
#lines = sortlines(lines)
visualize(lines)

22
line_draw/util.py 100644
Wyświetl plik

@ -0,0 +1,22 @@
import os
def midpt(*args):
xs,ys = 0,0
for p in args:
xs += p[0]
ys += p[1]
return xs/len(args),ys/len(args)
def distsum(*args):
return sum([ ((args[i][0]-args[i-1][0])**2 + (args[i][1]-args[i-1][1])**2)**0.5 for i in range(1,len(args))])
def is_image_file(file_path):
image_extensions = ['.jpg', '.jpeg', '.png']
tmp,ext = extract_file_name_and_extension(file_path)
return ext in image_extensions
def extract_file_name_and_extension(file_path):
file_name_with_extension = os.path.basename(file_path)
file_name, file_extension = os.path.splitext(file_name_with_extension)
return file_name, file_extension

Wyświetl plik

@ -1,263 +1,68 @@
from random import *
import math
import argparse
from PIL import Image, ImageDraw, ImageOps
from line_draw import sketch
from line_draw.default import argument
from line_draw.strokesort import visualize
from filters import *
from strokesort import *
import perlin
from util import *
no_cv = False
export_path = "output/out.svg"
draw_contours = True
draw_hatch = True
show_bitmap = False
resolution = 1024
hatch_size = 16
contour_simplify = 2
try:
import numpy as np
import cv2
except:
print("Cannot import numpy/openCV. Switching to NO_CV mode.")
no_cv = True
def find_edges(IM):
print("finding edges...")
if no_cv:
#appmask(IM,[F_Blur])
appmask(IM,[F_SobelX,F_SobelY])
else:
im = np.array(IM)
im = cv2.GaussianBlur(im,(3,3),0)
im = cv2.Canny(im,100,200)
IM = Image.fromarray(im)
return IM.point(lambda p: p > 128 and 255)
def getdots(IM):
print("getting contour points...")
PX = IM.load()
dots = []
w,h = IM.size
for y in range(h-1):
row = []
for x in range(1,w):
if PX[x,y] == 255:
if len(row) > 0:
if x-row[-1][0] == row[-1][-1]+1:
row[-1] = (row[-1][0],row[-1][-1]+1)
else:
row.append((x,0))
else:
row.append((x,0))
dots.append(row)
return dots
def connectdots(dots):
print("connecting contour points...")
contours = []
for y in range(len(dots)):
for x,v in dots[y]:
if v > -1:
if y == 0:
contours.append([(x,y)])
else:
closest = -1
cdist = 100
for x0,v0 in dots[y-1]:
if abs(x0-x) < cdist:
cdist = abs(x0-x)
closest = x0
if cdist > 3:
contours.append([(x,y)])
else:
found = 0
for i in range(len(contours)):
if contours[i][-1] == (closest,y-1):
contours[i].append((x,y,))
found = 1
break
if found == 0:
contours.append([(x,y)])
for c in contours:
if c[-1][1] < y-1 and len(c)<4:
contours.remove(c)
return contours
def getcontours(IM,sc=2):
print("generating contours...")
IM = find_edges(IM)
IM1 = IM.copy()
IM2 = IM.rotate(-90,expand=True).transpose(Image.FLIP_LEFT_RIGHT)
dots1 = getdots(IM1)
contours1 = connectdots(dots1)
dots2 = getdots(IM2)
contours2 = connectdots(dots2)
for i in range(len(contours2)):
contours2[i] = [(c[1],c[0]) for c in contours2[i]]
contours = contours1+contours2
for i in range(len(contours)):
for j in range(len(contours)):
if len(contours[i]) > 0 and len(contours[j])>0:
if distsum(contours[j][0],contours[i][-1]) < 8:
contours[i] = contours[i]+contours[j]
contours[j] = []
for i in range(len(contours)):
contours[i] = [contours[i][j] for j in range(0,len(contours[i]),8)]
contours = [c for c in contours if len(c) > 1]
for i in range(0,len(contours)):
contours[i] = [(v[0]*sc,v[1]*sc) for v in contours[i]]
for i in range(0,len(contours)):
for j in range(0,len(contours[i])):
contours[i][j] = int(contours[i][j][0]+10*perlin.noise(i*0.5,j*0.1,1)),int(contours[i][j][1]+10*perlin.noise(i*0.5,j*0.1,2))
return contours
def hatch(IM,sc=16):
print("hatching...")
PX = IM.load()
w,h = IM.size
lg1 = []
lg2 = []
for x0 in range(w):
for y0 in range(h):
x = x0*sc
y = y0*sc
if PX[x0,y0] > 144:
pass
elif PX[x0,y0] > 64:
lg1.append([(x,y+sc/4),(x+sc,y+sc/4)])
elif PX[x0,y0] > 16:
lg1.append([(x,y+sc/4),(x+sc,y+sc/4)])
lg2.append([(x+sc,y),(x,y+sc)])
else:
lg1.append([(x,y+sc/4),(x+sc,y+sc/4)])
lg1.append([(x,y+sc/2+sc/4),(x+sc,y+sc/2+sc/4)])
lg2.append([(x+sc,y),(x,y+sc)])
lines = [lg1,lg2]
for k in range(0,len(lines)):
for i in range(0,len(lines[k])):
for j in range(0,len(lines[k])):
if lines[k][i] != [] and lines[k][j] != []:
if lines[k][i][-1] == lines[k][j][0]:
lines[k][i] = lines[k][i]+lines[k][j][1:]
lines[k][j] = []
lines[k] = [l for l in lines[k] if len(l) > 0]
lines = lines[0]+lines[1]
for i in range(0,len(lines)):
for j in range(0,len(lines[i])):
lines[i][j] = int(lines[i][j][0]+sc*perlin.noise(i*0.5,j*0.1,1)),int(lines[i][j][1]+sc*perlin.noise(i*0.5,j*0.1,2))-j
return lines
def sketch(path):
IM = None
possible = [path,"images/"+path,"images/"+path+".jpg","images/"+path+".png","images/"+path+".tif"]
for p in possible:
try:
IM = Image.open(p)
break
except FileNotFoundError:
print("The Input File wasn't found. Check Path")
exit(0)
pass
w,h = IM.size
IM = IM.convert("L")
IM=ImageOps.autocontrast(IM,10)
lines = []
if draw_contours:
lines += getcontours(IM.resize((resolution//contour_simplify,resolution//contour_simplify*h//w)),contour_simplify)
if draw_hatch:
lines += hatch(IM.resize((resolution//hatch_size,resolution//hatch_size*h//w)),hatch_size)
lines = sortlines(lines)
if show_bitmap:
disp = Image.new("RGB",(resolution,resolution*h//w),(255,255,255))
draw = ImageDraw.Draw(disp)
for l in lines:
draw.line(l,(0,0,0),5)
disp.show()
f = open(export_path,'w')
f.write(makesvg(lines))
f.close()
print(len(lines),"strokes.")
print("done.")
return lines
def makesvg(lines):
print("generating svg file...")
out = '<svg xmlns="http://www.w3.org/2000/svg" version="1.1">'
for l in lines:
l = ",".join([str(p[0]*0.5)+","+str(p[1]*0.5) for p in l])
out += '<polyline points="'+l+'" stroke="black" stroke-width="2" fill="none" />\n'
out += '</svg>'
return out
if __name__ == "__main__":
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Convert image to vectorized line drawing for plotters.')
parser.add_argument('-i','--input',dest='input_path',
default='lenna',action='store',nargs='?',type=str,
help='Input path')
parser.add_argument('-i', '--input', dest='input_path',
default='lenna', action='store', nargs='?', type=str,
help='Input image path')
parser.add_argument('-o','--output',dest='output_path',
default=export_path,action='store',nargs='?',type=str,
help='Output path.')
parser.add_argument('-o', '--output', dest='output_path',
default=argument.export_path, action='store', nargs='?', type=str,
help='Output image path')
parser.add_argument('-b','--show_bitmap',dest='show_bitmap',
const = not show_bitmap,default= show_bitmap,action='store_const',
help="Display bitmap preview.")
parser.add_argument('-r', '--resolution', dest='resolution',
default=argument.resolution, action='store', nargs='?', type=int,
help='Resolution of the output image')
parser.add_argument('-nc','--no_contour',dest='no_contour',
const = draw_contours,default= not draw_contours,action='store_const',
help="Don't draw contours.")
parser.add_argument('-nh','--no_hatch',dest='no_hatch',
const = draw_hatch,default= not draw_hatch,action='store_const',
help='Disable hatching.')
parser.add_argument('-b', '--show-bitmap', dest='show_bitmap',
const=not argument.show_bitmap, default=argument.show_bitmap, action='store_const',
help='Display bitmap preview.')
parser.add_argument('--no_cv',dest='no_cv',
const = not no_cv,default= no_cv,action='store_const',
help="Don't use openCV.")
parser.add_argument('-nc', '--no-contour', dest='no_contour',
const=argument.draw_contours, default=not argument.draw_contours, action='store_const',
help="Don't draw contours.")
parser.add_argument('-nh', '--no-hatch', dest='no_hatch',
const=argument.draw_hatch, default=not argument.draw_hatch, action='store_const',
help='Disable hatching.')
parser.add_argument('--hatch_size',dest='hatch_size',
default=hatch_size,action='store',nargs='?',type=int,
help='Patch size of hatches. eg. 8, 16, 32')
parser.add_argument('--contour_simplify',dest='contour_simplify',
default=contour_simplify,action='store',nargs='?',type=int,
help='Level of contour simplification. eg. 1, 2, 3')
parser.add_argument('--no-cv', dest='no_cv',
const=not argument.no_cv, default=argument.no_cv, action='store_const',
help="Don't use openCV.")
parser.add_argument('--hatch-size', dest='hatch_size',
default=argument.hatch_size, action='store', nargs='?', type=int,
help='Patch size of hatches. eg. 8, 16, 32')
parser.add_argument('--contour-simplify', dest='contour_simplify',
default=argument.contour_simplify, action='store', nargs='?', type=int,
help='Level of contour simplification. eg. 1, 2, 3')
parser.add_argument('-v', '--visualize', dest='visualize',
const=True, default=False, action='store_const',
help='Visualize the output using turtle')
parser.add_argument('--save-settings', dest='save_settings',
const=not argument.save_settings, default=argument.save_settings, action='store_const',
help='To Save the settings to a json file')
args = parser.parse_args()
input_path = args.input_path
export_path = args.output_path
draw_hatch = not args.no_hatch
draw_contours = not args.no_contour
hatch_size = args.hatch_size
contour_simplify = args.contour_simplify
show_bitmap = args.show_bitmap
no_cv = args.no_cv
sketch(args.input_path)
argument.draw_hatch = not args.no_hatch
argument.contour_simplify = not args.no_contour
argument.hatch_size = args.hatch_size
argument.contour_simplify = args.contour_simplify
argument.show_bitmap = args.show_bitmap
argument.no_cv = args.no_cv
argument.resolution = args.resolution
argument.save_settings = args.save_settings
lines = sketch(input_path, export_path)
if args.visualize:
if lines:
visualize(lines)

Plik diff jest za duży Load Diff

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 163 KiB

3
requirements.txt 100644
Wyświetl plik

@ -0,0 +1,3 @@
Pillow
Numpy
opencv-python

Wyświetl plik

@ -1,9 +0,0 @@
def midpt(*args):
xs,ys = 0,0
for p in args:
xs += p[0]
ys += p[1]
return xs/len(args),ys/len(args)
def distsum(*args):
return sum([ ((args[i][0]-args[i-1][0])**2 + (args[i][1]-args[i-1][1])**2)**0.5 for i in range(1,len(args))])