libdspl-2.0/dspl/src/array/flipip_cmplx.c

156 wiersze
4.5 KiB
C
Czysty Wina Historia

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright (c) 2015-2020 Sergey Bakhurin
* Digital Signal Processing Library [http://dsplib.org]
*
* This file is part of libdspl-2.0.
*
* is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DSPL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "dspl.h"
#ifdef DOXYGEN_ENGLISH
/*! ****************************************************************************
\ingroup ARRAY_GROUP
\fn int flipip_cmplx(complex_t* x, int n)
\brief Flip complex vector `x` in place
Function flips complex vector `x` length `n` in the memory
\n
For example complex vector `x` length 6: \n
\verbatim
x = [0+0j, 1+1j, 2+2j, 3+3j, 4+4j, 5+5j]
\endverbatim
After flipping it will be as follow:
\verbatim
x = [5+5j, 4+4j, 3+3j, 2+2j, 1+1j, 0+0j]
\endverbatim
\param[in, out] x
Pointer to the complex vector `x`. \n
Vector size is `[n x 1]`. \n
Flipped vector will be on the same address. \n
\param[in] n
Length of the vector `x`. \n \n
\return
`RES_OK` if function returns successfully. \n
Else \ref ERROR_CODE_GROUP "error code".
Example:
\code{.cpp}
complex_t y[5] = {{0.0, 0.0}, {1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0}, {4.0, 4.0}};
for(i = 0; i < 5; i++)
printf("%6.1f%+.1fj ", RE(y[i]), IM(y[i]));
flipip_cmplx(y, 5);
printf("\n");
for(i = 0; i < 5; i++)
printf("%6.1f%+.1fj ", RE(y[i]), IM(y[i]));
\endcode
\n
Program result:
\verbatim
0.0+0.0j 1.0+1.0j 2.0+2.0j 3.0+3.0j 4.0+4.0j
4.0+4.0j 3.0+3.0j 2.0+2.0j 1.0+1.0j 0.0+0.0j
\endverbatim
\author Sergey Bakhurin www.dsplib.org
***************************************************************************** */
#endif
#ifdef DOXYGEN_RUSSIAN
/*! ****************************************************************************
\ingroup ARRAY_GROUP
\fn int flipip_cmplx(complex_t* x, int n)
\brief Функция отражения комплексного вектора `x`
Функция производит отражение комплексного вектора длины `n`
в памяти данных. \n
Например исходный вектор `x` длины 6: \n
\verbatim
x = [0+0j, 1+1j, 2+2j, 3+3j, 4+4j, 5+5j]
\endverbatim
После отражения вектор `x` будет иметь вид:
\verbatim
x = [5+5j, 4+4j, 3+3j, 2+2j, 1+1j, 0+0j]
\endverbatim
\param[in, out] x
Указатель на комплексный вектор `x`. \n
Размер вектора `[n x 1]`. \n
Результат отражения будет помещен по этому же адресу. \n
\n
\param[in] n
Размер вектора `x`. \n
\n
\return
`RES_OK` если функция выполнена успешно. \n
В противном случае \ref ERROR_CODE_GROUP "код ошибки".
Пример:
\code{.cpp}
complex_t y[5] = {{0.0, 0.0}, {1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0}, {4.0, 4.0}};
for(i = 0; i < 5; i++)
printf("%6.1f%+.1fj ", RE(y[i]), IM(y[i]));
flipip_cmplx(y, 5);
printf("\n");
for(i = 0; i < 5; i++)
printf("%6.1f%+.1fj ", RE(y[i]), IM(y[i]));
\endcode
\n
Результат выполнения:
\verbatim
0.0+0.0j 1.0+1.0j 2.0+2.0j 3.0+3.0j 4.0+4.0j
4.0+4.0j 3.0+3.0j 2.0+2.0j 1.0+1.0j 0.0+0.0j
\endverbatim
\author
Бахурин Сергей
www.dsplib.org
***************************************************************************** */
#endif
int DSPL_API flipip_cmplx(complex_t* x, int n)
{
int k;
complex_t tmp;
if(!x)
return ERROR_PTR;
if(n<1)
return ERROR_SIZE;
for(k = 0; k < n/2; k++)
{
RE(tmp) = RE(x[k]);
RE(x[k]) = RE(x[n-1-k]);
RE(x[n-1-k]) = RE(tmp);
IM(tmp) = IM(x[k]);
IM(x[k]) = IM(x[n-1-k]);
IM(x[n-1-k]) = IM(tmp);
}
return RES_OK;
}