libdspl-2.0/dspl/src/filter_an.c

461 wiersze
9.3 KiB
C

/*
* Copyright (c) 2015-2019 Sergey Bakhurin
* Digital Signal Processing Library [http://dsplib.org]
*
* This file is part of libdspl-2.0.
*
* is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DSPL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "dspl.h"
/******************************************************************************
Complex frequency response of an analog filter H(s)
*******************************************************************************/
int DSPL_API freqs(double* b, double* a, int ord,
double* w, int n, complex_t *h)
{
complex_t jw;
complex_t *bc = NULL;
complex_t *ac = NULL;
complex_t num, den;
double mag;
int k;
int res;
if(!b || !a || !w || !h)
return ERROR_PTR;
if(ord<0)
return ERROR_FILTER_ORD;
if(n<1)
return ERROR_SIZE;
RE(jw) = 0.0;
bc = (complex_t*) malloc((ord+1) * sizeof(complex_t));
res = re2cmplx(b, ord+1, bc);
if( res!=RES_OK )
goto exit_label;
ac = (complex_t*) malloc((ord+1) * sizeof(complex_t));
res = re2cmplx(a, ord+1, ac);
if( res!=RES_OK )
goto exit_label;
for(k = 0; k < n; k++)
{
IM(jw) = w[k];
res = polyval_cmplx(bc, ord, &jw, 1, &num);
if(res != RES_OK)
goto exit_label;
res = polyval_cmplx(ac, ord, &jw, 1, &den);
if(res != RES_OK)
goto exit_label;
mag = ABSSQR(den);
if(mag == 0.0)
{
res = ERROR_DIV_ZERO;
goto exit_label;
}
mag = 1.0 / mag;
RE(h[k]) = CMCONJRE(num, den) * mag;
IM(h[k]) = CMCONJIM(num, den) * mag;
}
res = RES_OK;
exit_label:
if(bc)
free(bc);
if(ac)
free(ac);
return res;
}
/******************************************************************************
* Complex frequency response of an analog filter H(s), s is complex variable
******************************************************************************/
int DSPL_API freqs_cmplx(double* b, double* a, int ord,
complex_t* s, int n, complex_t *h)
{
complex_t *bc = NULL;
complex_t *ac = NULL;
complex_t num, den;
double mag;
int k;
int res;
if(!b || !a || !s || !h)
return ERROR_PTR;
if(ord<0)
return ERROR_FILTER_ORD;
if(n<1)
return ERROR_SIZE;
bc = (complex_t*) malloc((ord+1) * sizeof(complex_t));
res = re2cmplx(b, ord+1, bc);
if( res!=RES_OK )
goto exit_label;
ac = (complex_t*) malloc((ord+1) * sizeof(complex_t));
res = re2cmplx(a, ord+1, ac);
if( res!=RES_OK )
goto exit_label;
for(k = 0; k < n; k++)
{
res = polyval_cmplx(bc, ord, s+k, 1, &num);
if(res != RES_OK)
goto exit_label;
res = polyval_cmplx(ac, ord, s+k, 1, &den);
if(res != RES_OK)
goto exit_label;
mag = ABSSQR(den);
if(mag == 0.0)
{
res = ERROR_DIV_ZERO;
goto exit_label;
}
mag = 1.0 / mag;
RE(h[k]) = CMCONJRE(num, den) * mag;
IM(h[k]) = CMCONJIM(num, den) * mag;
}
res = RES_OK;
exit_label:
if(bc)
free(bc);
if(ac)
free(ac);
return res;
}
/******************************************************************************
impulse response of an analog filter H(s)
*******************************************************************************/
int DSPL_API freqs2time(double* b, double* a, int ord, double fs,
int n, fft_t* pfft, double *t, double *h)
{
double *w = NULL;
complex_t *hs = NULL;
complex_t *ht = NULL;
int err, k;
if(!b || !a || !t || !h)
return ERROR_PTR;
if(ord<1)
return ERROR_FILTER_ORD;
if(n<1)
return ERROR_SIZE;
w = (double*)malloc(n*sizeof(double));
hs = (complex_t*)malloc(n*sizeof(complex_t));
err = linspace(-fs*0.5, fs*0.5, n, DSPL_PERIODIC, w);
if(err != RES_OK)
goto exit_label;
err = freqs(b, a, ord, w, n, hs);
if(err != RES_OK)
goto exit_label;
err = fft_shift_cmplx(hs, n, hs);
if(err != RES_OK)
goto exit_label;
ht = (complex_t*)malloc(n*sizeof(complex_t));
err = ifft_cmplx(hs, n, pfft, ht);
if(err != RES_OK)
{
err = idft_cmplx(hs, n, ht);
if(err != RES_OK)
goto exit_label;
}
for(k = 0; k < n; k++)
{
t[k] = (double)k/fs;
h[k] = RE(ht[k]) * fs;
}
exit_label:
if(w)
free(w);
if(hs)
free(hs);
if(ht)
free(ht);
return err;
}
/******************************************************************************
Magnitude, phase response and group delay of an analog filter H(s)
*******************************************************************************/
int DSPL_API freqs_resp(double* b, double* a, int ord,
double* w, int n, int flag,
double *h, double* phi, double* tau)
{
int res, k;
complex_t *hc = NULL;
double *phi0 = NULL;
double *phi1 = NULL;
double *w0 = NULL;
double *w1 = NULL;
if(!b || !a || !w)
return ERROR_PTR;
if(ord < 1)
return ERROR_FILTER_ORD;
if(n < 1)
return ERROR_SIZE;
hc = (complex_t*) malloc (n*sizeof(complex_t));
res = freqs(b, a, ord, w, n, hc);
if(res != RES_OK)
goto exit_label;
if(h)
{
if(flag & DSPL_FLAG_LOG)
{
for(k = 0; k < n; k++)
h[k] = 10.0 * log10(ABSSQR(hc[k]));
}
else
{
for(k = 0; k < n; k++)
h[k] = sqrt(ABSSQR(hc[k]));
}
}
if(phi)
{
for(k = 0; k < n; k++)
phi[k] = atan2(IM(hc[k]), RE(hc[k]));
if(flag & DSPL_FLAG_UNWRAP)
{
res = unwrap(phi, n, M_2PI, 0.8);
if(res != RES_OK)
goto exit_label;
}
}
if(tau)
{
phi0 = (double*) malloc(n*sizeof(double));
phi1 = (double*) malloc(n*sizeof(double));
w0 = (double*) malloc(n*sizeof(double));
w1 = (double*) malloc(n*sizeof(double));
w0[0] = w[0] - (w[1] - w[0])*0.02;
w1[0] = w[0] + (w[1] - w[0])*0.02;
for(k = 1; k < n; k++)
{
w0[k] = w[k] - (w[k] - w[k-1])*0.02;
w1[k] = w[k] + (w[k] - w[k-1])*0.02;
}
res = freqs_resp(b, a, ord, w0, n, DSPL_FLAG_UNWRAP, NULL, phi0, NULL);
if(res != RES_OK)
goto exit_label;
res = freqs_resp(b, a, ord, w1, n, DSPL_FLAG_UNWRAP, NULL, phi1, NULL);
if(res != RES_OK)
goto exit_label;
for(k = 0; k < n; k++)
tau[k] = (phi0[k] - phi1[k])/(w1[k] - w0[k]);
}
exit_label:
if(hc)
free(hc);
if(phi0)
free(phi0);
if(phi1)
free(phi1);
if(w0)
free(w0);
if(w1)
free(w1);
return res;
}
/*******************************************************************************
Complex frequency response of a digital filter H(z)
*******************************************************************************/
int DSPL_API freqz(double* b, double* a, int ord, double* w,
int n, complex_t *h)
{
complex_t jw;
complex_t *bc = NULL;
complex_t *ac = NULL;
complex_t num, den;
double mag;
int k;
int res;
if(!b || !w || !h)
return ERROR_PTR;
if(ord<0)
return ERROR_FILTER_ORD;
if(n<1)
return ERROR_SIZE;
bc = (complex_t*) malloc((ord+1) * sizeof(complex_t));
res = re2cmplx(b, ord+1, bc);
if( res!=RES_OK )
goto exit_label;
if(a)
{
// IIR filter if a != NULL
ac = (complex_t*) malloc((ord+1) * sizeof(complex_t));
res = re2cmplx(a, ord+1, ac);
if( res!=RES_OK )
goto exit_label;
for(k = 0; k < n; k++)
{
RE(jw) = cos(w[k]);
IM(jw) = -sin(w[k]);
res = polyval_cmplx(bc, ord, &jw, 1, &num);
if(res != RES_OK)
goto exit_label;
res = polyval_cmplx(ac, ord, &jw, 1, &den);
if(res != RES_OK)
goto exit_label;
mag = ABSSQR(den);
if(mag == 0.0)
{
res = ERROR_DIV_ZERO;
goto exit_label;
}
mag = 1.0 / mag;
RE(h[k]) = CMCONJRE(num, den) * mag;
IM(h[k]) = CMCONJIM(num, den) * mag;
}
}
else
{
// FIR filter if a == NULL
for(k = 0; k < n; k++)
{
RE(jw) = cos(w[k]);
IM(jw) = -sin(w[k]);
res = polyval_cmplx(bc, ord, &jw, 1, h+k);
if(res != RES_OK)
goto exit_label;
}
}
res = RES_OK;
exit_label:
if(bc)
free(bc);
if(ac)
free(ac);
return res;
}
/*******************************************************************************
Unwrap function
*******************************************************************************/
int DSPL_API unwrap(double* phi, int n, double lev, double mar)
{
double a[2] = {0.0, 0.0};
double d;
double th;
int k;
int flag = 1;
if(!phi)
return ERROR_PTR;
if(n<1)
return ERROR_SIZE;
if(lev<=0 || mar <=0)
return ERROR_UNWRAP;
th = mar*lev;
while(flag)
{
flag = 0;
a[0] = a[1] = 0.0;
for(k = 0; k<n-1; k++)
{
d = phi[k+1] - phi[k];
if( d > th)
{
a[0] -= lev;
flag = 1;
}
if( d < -th)
{
a[0] += lev;
flag = 1;
}
phi[k]+=a[1];
a[1] = a[0];
}
phi[n-1]+=a[1];
}
return RES_OK;
}