\form#0:$x(i)$ \form#1:$i = 0,1,\ldots n$ \form#2:$y(i)$ \form#3:\[ y(i) = k_x x(i) + d_x, \qquad k_x = \frac{h}{x_{\textrm{max}} - x_{\textrm{min}}}. \] \form#4:$x_{\textrm{min}}$ \form#5:$x_{\textrm{max}}$ \form#6:$d_x$ \form#7:$h + d_x$ \form#8:\[ e = \max \left( \frac{|x(k) - y(k)| }{ |x(k)|} \right), \quad \quad |x(k)| > 0, \] \form#9:\[ e = \max(|x(k) - y(k)| ), ~\qquad \quad~|x(k)| = 0, \] \form#10:$ e$ \form#11:\[ e = \max \left( \frac{|x(k) - y(k)|}{|x(k)|} \right), \quad \quad |x(k)| > 0, \] \form#12:$ C_ord(x)$ \form#13:\[ C_ord(x) = 2 x C_{ord-1}(x) - C_{ord-2}(x), \] \form#14:$ C_0(x) = 1 $ \form#15:$ C_1(x) = x$ \form#16:$ U_{ord}(x)$ \form#17:\[ U_{ord}(x) = 2 x U_{ord-1}(x) - U_{ord-2}(x), \] \form#18:$ U_0(x) = 1 $ \form#19:$ U_1(x) = 2x$ \form#20:$ x = a + j b $ \form#21:\[ |x|^2 = x x^* = a^2 + b^2. \] \form#22:\[ \textrm{Arccos}(x) = \frac{\pi}{2} - \textrm{Arcsin}(x) = \frac{\pi}{2} -j \textrm{Ln}\left( j x + \sqrt{1 - x^2} \right) \] \form#23:\[ \textrm{Arcsin}(x) = j \textrm{Ln}\left( j x + \sqrt{1 - x^2} \right) \] \form#24:\[ \textrm{cos}(x) = \frac{\exp(jx) + \exp(-jx)}{2} \] \form#25:\[ \textrm{Ln}(x) = j \varphi + \ln(|x|), \] \form#26:$\varphi$ \form#27:\[ \textrm{sin}(x) = \frac{\exp(jx) - \exp(-jx)}{2j} \] \form#28:\[ y(k) = \sqrt{x(k)}, \qquad k = 0 \ldots n-1. \] \form#29:$ c = a * b$ \form#30:$a$ \form#31:$b$ \form#32:$n = n_0 \times n_1 \times n_2 \times \ldots \times n_p \times m$ \form#33:$n_i = 2,3,5,7$ \form#34:$m $ \form#35:\[ H(z) = \frac{\sum_{n = 0}^{N} b_n z^{-n}} {1+{\frac{1}{a_0}}\sum_{m = 1}^{M} a_m z^{-m}}, \] \form#36:$a_0$ \form#37:$N=M=$ \form#38:$H(z)$ \form#39:$s(t) = \sin(2\pi \cdot 0.05 t) + n(t)$ \form#40:$n(t)$ \form#41:$ n $ \form#42:$ x(m) $ \form#43:$ m = 0 \ldots n-1 $ \form#44:\[ Y(k) = \sum_{m = 0}^{n-1} x(m) \exp \left( -j \frac{2\pi}{n} m k \right), \] \form#45:$ k = 0 \ldots n-1 $ \form#46:$x(m)$ \form#47:$n$ \form#48:$Y(k)$ \form#49:$ n^2 $ \form#50:\[ y(k) = \sum_{m = 0}^{n-1} x(m) \exp \left( j \frac{2\pi}{n} m k \right), \] \form#51:$y(k)$ \form#52:$ u = \textrm{cd}^{-1}(w, k)$ \form#53:$ w $ \form#54:$ k $ \form#55:$ u = \textrm{sn}^{-1}(w, k)$ \form#56:$ y = \textrm{cd}(u K(k), k)$ \form#57:$ u $ \form#58:$ k_i $ \form#59:$ K(k) $ \form#60:\[ K(k) = \frac{\pi}{2} \prod_{i = 1}^{\infty}(1+k_i), \] \form#61:$ k_0 = k$ \form#62:\[ k_i = \left( \frac{k_{i-1}} { 1+\sqrt{1-k_{i-1}^2} } \right)^2 \] \form#63:$ k<1 $ \form#64:$ y = \textrm{sn}(u K(k), k)$ \form#65:$n = n_0 \times n_1 \times n_2 \ldots \times n_p \times m$ \form#66:$\frac{P}{Q}$ \form#67:$P$ \form#68:$Q$ \form#69:$1/F_{\textrm{s}}$ \form#70:\[ Y(k) = \frac{1}{N} \sum_{m = 0}^{n-1} x(m) \exp \left( j \frac{2\pi}{n} m k \right), \] \form#71:$n = n_0 \times n_1 \times n_2 \times n_3 \times \ldots \times n_p \times m$ \form#72:$ n = 725760 $ \form#73:$725760 = 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 9 \cdot 16 $ \form#74:$ n = 172804 = 43201 \cdot 4 $ \form#75:$ n = 13 \cdot 17 \cdot 23 \cdot 13 = 66079 $ \form#76:$\sqrt{2^{31}} = 46340.95$ \form#77:$x_0$ \form#78:$x_1$ \form#79:$x(k) = x_0 + k \cdot dx$ \form#80:$dx = \frac{x_1 - x_0}{n-1}$ \form#81:$k = 0 \ldots n-1.$ \form#82:$dx = \frac{x_1 - x_0}{n}$ \form#83:$10^{x_0}$ \form#84:$10^{x_1}$ \form#85:$x(k) = 10^{x_0} \cdot dx^k$ \form#86:$dx = \sqrt[n-1]{10^{x_1 - x_0}}$ \form#87:$dx = \sqrt[n]{10^{x_1 - x_0}}$ \form#88:$ H(j \omega) $ \form#89:$ H(j \omega)$ \form#90:$ H(s) $ \form#91:\[ H(s) = \frac {\sum_{k = 0}^{N} b_k s^k} {\sum_{m = 0}^{N} a_m s^m}, \] \form#92:$ N $ \form#93:$ s = j \omega $ \form#94:$ \omega $ \form#95:$H(s)$ \form#96:$ H \left(\mathrm{e}^{j\omega} \right) $ \form#97:$ 2\pi $ \form#98:$ \pi $ \form#99:$ -\pi $ \form#100:$ H \left(e^{j \omega} \right)$ \form#101:\[ H(z) = \frac {\sum_{k = 0}^{N} b_k z^{-k}} {\sum_{m = 0}^{N} a_m z^{-m}}, \] \form#102:$N$ \form#103:$z = e^{j \omega} $ \form#104:$\omega$ \form#105:$ 2 \pi-$ \form#106:$2 \pi$ \form#107:$-\pi$ \form#108:$ \pi$ \form#109:$ H \left(e^{j \omega} \right) = H^* \left(e^{-j \omega} \right)$ \form#110:$\pi$ \form#111:$ -R_p $ \form#112:$ H(s)$ \form#113:$-R_p$ \form#114:$ R_p $ \form#115:$-R_s$ \form#116:$H(j\cdot 1) = -R_s$ \form#117:\[ H(s) = \frac{\sum_{n = 0}^{N_z} b_n \cdot s^n}{\sum_{m = 0}^{N_p} a_m \cdot s^m} = \frac{\prod_{n = 0}^{N_z}(s-z_n)}{\prod_{m = 0}^{N_p} (s-p_m)} \] \form#118:\[ H(z) = \sum_{n = 0}^{ord} h_n z^{-n} \] \form#119:$ F(s) $ \form#120:$F(s)$ \form#121:$Y(s) = (H \circ F)(s) = H(F(s))$ \form#122:\[ H(s) = \frac{\sum\limits_{m = 0}^{n} b_m s^m} {\sum\limits_{k = 0}^{n} a_k s^k}, \quad F(s) = \frac{\sum\limits_{m = 0}^{p} d_m s^m} {\sum\limits_{k = 0}^{p} c_k s^k}, \quad Y(s) = \frac{\sum\limits_{m = 0}^{n p} \beta_m s^m} {\sum\limits_{k = 0}^{n p} \alpha_k s^k} \] \form#123:$Y(s) = (H \circ F)(s)$ \form#124:\[ s \leftarrow \frac{1 - z^{-1}}{1 - z^{-1}}. \] \form#125:$\Omega$ \form#126:\[ \Omega = \tan(\omega / 2). \] \form#127:\[ s(t) = \sum\limits_{n = 0}^{n_{\omega}-1} S(\omega_n) \exp(j\omega_n t) \] \form#128:$\omega_n$ \form#129:$S(\omega_n)$ \form#130:$ I_0(x)$ \form#131:$ x $ \form#132:$[0 \ 3]$ \form#133:$ \textrm{sinc}(x,a) = \frac{\sin(ax)}{ax}$ \form#134:\[ \textrm{Si}(x) = \int_{0}^{x} \frac{\sin(x)}{x} \, dx\] \form#135:$[-6\pi \ 6\pi]$ \form#136:$P_N(x)$ \form#137:$N-$ \form#138:\[ P_N(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + ... a_N \cdot x^N. \] \form#139:\[ P_N(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \cdot ( \ldots x \cdot (a_{N-1} + x\cdot a_N) \ldots ))) \] \form#140:$\mu$ \form#141:$\sigma$ \form#142:$\sigma^2$ \form#143:$\mu = 0$ \form#144:$\sigma=1$