/* * Copyright (c) 2015-2019 Sergey Bakhurin * Digital Signal Processing Library [http://dsplib.org] * * This file is part of libdspl-2.0. * * is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * DSPL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Foobar. If not, see . */ #include #include #include #include "dspl.h" /******************************************************************************* Fourier Series Decomposition *******************************************************************************/ int DSPL_API fourier_series_dec(double* t, double* s, int nt, double period, int nw, double* w, complex_t* y) { int k, m; double dw = M_2PI / period; complex_t e[2]; if(!t || !s || !w || !y) return ERROR_PTR; if(nt<1 || nw < 1) return ERROR_SIZE; if(period <= 0.0) return ERROR_NEGATIVE; memset(y, 0 , nw*sizeof(complex_t)); for(k = 0; k < nw; k++) { w[k] = (k - nw/2) * dw; RE(e[1]) = s[0] * cos(w[k] * t[0]); IM(e[1]) = -s[0] * sin(w[k] * t[0]); for(m = 1; m < nt; m++) { RE(e[0]) = RE(e[1]); IM(e[0]) = IM(e[1]); RE(e[1]) = s[m] * cos(w[k] * t[m]); IM(e[1]) = - s[m] * sin(w[k] * t[m]); RE(y[k]) += 0.5 * (RE(e[0]) + RE(e[1]))*(t[m] - t[m-1]); IM(y[k]) += 0.5 * (IM(e[0]) + IM(e[1]))*(t[m] - t[m-1]); } RE(y[k]) /= period; IM(y[k]) /= period; } if(!(nw%2)) RE(y[0]) = RE(y[1]) = 0.0; return RES_OK; } /******************************************************************************* Fourier Series Decomposition for complex input signal *******************************************************************************/ int DSPL_API fourier_series_dec_cmplx(double* t, complex_t* s, int nt, double period, int nw, double* w, complex_t* y) { int k, m; double dw = M_2PI / period; complex_t e[2]; if(!t || !s || !w || !y) return ERROR_PTR; if(nt<1 || nw < 1) return ERROR_SIZE; if(period <= 0.0) return ERROR_NEGATIVE; memset(y, 0 , nw*sizeof(complex_t)); for(k = 0; k < nw; k++) { w[k] = (k - nw/2) * dw; RE(e[1]) = RE(s[0]) * cos(w[k] * t[0]) + IM(s[0]) * sin(w[k] * t[0]); IM(e[1]) = -RE(s[0]) * sin(w[k] * t[0]) + IM(s[0]) * cos(w[k] * t[0]); for(m = 1; m < nt; m++) { RE(e[0]) = RE(e[1]); IM(e[0]) = IM(e[1]); RE(e[1]) = RE(s[m]) * cos(w[k] * t[m]) + IM(s[m]) * sin(w[k] * t[m]); IM(e[1]) = -RE(s[m]) * sin(w[k] * t[m]) + IM(s[m]) * cos(w[k] * t[m]); RE(y[k]) += 0.5 * (RE(e[0]) + RE(e[1]))*(t[m] - t[m-1]); IM(y[k]) += 0.5 * (IM(e[0]) + IM(e[1]))*(t[m] - t[m-1]); } RE(y[k]) /= period; IM(y[k]) /= period; } if(!(nw%2)) RE(y[0]) = RE(y[1]) = 0.0; return RES_OK; } /******************************************************************************* Fourier Transform *******************************************************************************/ int DSPL_API fourier_integral_cmplx(double* t, complex_t* s, int nt, int nw, double* w, complex_t* y) { int k, m; complex_t e[2]; if(!t || !s || !w || !y) return ERROR_PTR; if(nt<1 || nw < 1) return ERROR_SIZE; memset(y, 0 , nw*sizeof(complex_t)); for(k = 0; k < nw; k++) { RE(e[1]) = RE(s[0]) * cos(w[k] * t[0]) + IM(s[0]) * sin(w[k] * t[0]); IM(e[1]) = -RE(s[0]) * sin(w[k] * t[0]) + IM(s[0]) * cos(w[k] * t[0]); for(m = 1; m < nt; m++) { RE(e[0]) = RE(e[1]); IM(e[0]) = IM(e[1]); RE(e[1]) = RE(s[m]) * cos(w[k] * t[m]) + IM(s[m]) * sin(w[k] * t[m]); IM(e[1]) = -RE(s[m]) * sin(w[k] * t[m]) + IM(s[m]) * cos(w[k] * t[m]); RE(y[k]) += 0.5 * (RE(e[0]) + RE(e[1]))*(t[m] - t[m-1]); IM(y[k]) += 0.5 * (IM(e[0]) + IM(e[1]))*(t[m] - t[m-1]); } } return RES_OK; } /******************************************************************************* Fourier Series Reconstruction *******************************************************************************/ int DSPL_API fourier_series_rec(double* w, complex_t* s, int nw, double *t, int nt, complex_t* y) { int k, m; complex_t e; if(!t || !s || !w || !y) return ERROR_PTR; if(nt<1 || nw < 1) return ERROR_SIZE; memset(y, 0, nt*sizeof(complex_t)); for(k = 0; k < nw; k++) { for(m = 0; m < nt; m++) { RE(e) = cos(w[k] * t[m]); IM(e) = sin(w[k] * t[m]); RE(y[m]) += CMRE(s[k], e); IM(y[m]) += CMIM(s[k], e); } } return RES_OK; }