/* * Copyright (c) 2015-2019 Sergey Bakhurin * Digital Signal Processing Library [http://dsplib.org] * * This file is part of libdspl-2.0. * * is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * DSPL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Foobar. If not, see . */ #include #include #include #include "dspl.h" /****************************************************************************** Concntenate arrays *******************************************************************************/ int DSPL_API concat(void* a, size_t na, void *b, size_t nb, void* c) { if(!a || !b || !c || c == b) return ERROR_PTR; if(na < 1 || nb < 1) return ERROR_SIZE; if(c != a) memcpy(c, a, na); memcpy((char*)c+na, b, nb); return RES_OK; } /****************************************************************************** decimate real vector *******************************************************************************/ int DSPL_API decimate(double* x, int n, int dec, double* y, int* cnt) { int k = 0, i = 0; if(!x || !y) return ERROR_PTR; if(n < 1) return ERROR_SIZE; if(dec < 1) return ERROR_NEGATIVE; k = i = 0; while(k + dec < n) { y[i] = x[k]; k+=dec; i++; } if(cnt) *cnt = i; return RES_OK; } /****************************************************************************** decimate complex vector *******************************************************************************/ int DSPL_API decimate_cmplx(complex_t* x, int n, int dec, complex_t* y, int* cnt) { int k = 0, i = 0; if(!x || !y) return ERROR_PTR; if(n < 1) return ERROR_SIZE; if(dec < 1) return ERROR_NEGATIVE; k = i = 0; while(k + dec < n) { RE(y[i]) = RE(x[k]); IM(y[i]) = IM(x[k]); k+=dec; i++; } if(cnt) *cnt = i; return RES_OK; } /****************************************************************************** Flip real array in place *******************************************************************************/ int DSPL_API flipip(double* x, int n) { int k; double tmp; if(!x) return ERROR_PTR; if(n<1) return ERROR_SIZE; for(k = 0; k < n/2; k++) { tmp = x[k]; x[k] = x[n-1-k]; x[n-1-k] = tmp; } return RES_OK; } /****************************************************************************** Flip complex array in place *******************************************************************************/ int DSPL_API flipip_cmplx(complex_t* x, int n) { int k; complex_t tmp; if(!x) return ERROR_PTR; if(n<1) return ERROR_SIZE; for(k = 0; k < n/2; k++) { RE(tmp) = RE(x[k]); RE(x[k]) = RE(x[n-1-k]); RE(x[n-1-k]) = RE(tmp); IM(tmp) = IM(x[k]); IM(x[k]) = IM(x[n-1-k]); IM(x[n-1-k]) = IM(tmp); } return RES_OK; } /****************************************************************************** Verif double *******************************************************************************/ int DSPL_API verif(double* x, double* y, size_t n, double eps, double* err) { double d, maxd; size_t k; int res; if(!x || !y) return ERROR_PTR; if(n < 1) return ERROR_SIZE; if(eps <= 0.0 ) return ERROR_NEGATIVE; maxd = -100.0; for(k = 0; k < n; k++) { d = fabs(x[k] - y[k]); if(fabs(x[k]) > 0.0) { d = d / fabs(x[k]); if(d > maxd) maxd = d; } } if(err) *err = maxd; if(maxd > eps) res = DSPL_VERIF_FAILED; else res = DSPL_VERIF_SUCCESS; return res; } /****************************************************************************** Verif double *******************************************************************************/ int DSPL_API verif_cmplx(complex_t* x, complex_t* y, size_t n, double eps, double* err) { complex_t d; double mx, md, maxd; size_t k; int res; if(!x || !y) return ERROR_PTR; if(n < 1) return ERROR_SIZE; if(eps <= 0.0 ) return ERROR_NEGATIVE; maxd = -100.0; for(k = 0; k < n; k++) { RE(d) = RE(x[k]) - RE(y[k]); IM(d) = IM(x[k]) - IM(y[k]); md = ABS(d); mx = ABS(x[k]); if(mx > 0.0) { md = md / mx; if(md > maxd) maxd = md; } } if(err) *err = maxd; if(maxd > eps) res = DSPL_VERIF_FAILED; else res = DSPL_VERIF_SUCCESS; return res; }