libdspl-2.0/dspl/src/dft/fft_create.c

368 wiersze
12 KiB
C
Czysty Zwykły widok Historia

New Structure is beginning Changes to be committed: deleted: _release/.gitignore deleted: _release/Makefile modified: _release/dspl.c modified: _release/dspl.h deleted: _release/test.c modified: dspl/Makefile modified: dspl/src/array.c new file: dspl/src/array/array_scale_lin.c new file: dspl/src/array/concat.c new file: dspl/src/array/decimate.c new file: dspl/src/array/decimate_cmplx.c new file: dspl/src/array/find_nearest.c new file: dspl/src/array/flipip.c new file: dspl/src/array/flipip_cmplx.c new file: dspl/src/array/linspace.c new file: dspl/src/array/logspace.c new file: dspl/src/array/ones.c new file: dspl/src/array/sum.c new file: dspl/src/array/sum_sqr.c modified: dspl/src/dft.c new file: dspl/src/dft/dft.c new file: dspl/src/dft/dft_cmplx.c new file: dspl/src/dft/fft.c new file: dspl/src/dft/fft_abs.c new file: dspl/src/dft/fft_abs_cmplx.c new file: dspl/src/dft/fft_cmplx.c new file: dspl/src/dft/fft_create.c new file: dspl/src/dft/fft_free.c new file: dspl/src/dft/fft_krn.c new file: dspl/src/dft/fft_mag.c new file: dspl/src/dft/fft_mag_cmplx.c new file: dspl/src/dft/fft_shift.c new file: dspl/src/dft/fft_shift_cmplx.c renamed: dspl/src/fft_subkernel.c -> dspl/src/dft/fft_subkernel.c new file: dspl/src/dft/fourier_integral_cmplx.c new file: dspl/src/dft/fourier_series_dec.c new file: dspl/src/dft/fourier_series_dec_cmplx.c new file: dspl/src/dft/fourier_series_rec.c new file: dspl/src/dft/goertzel.c renamed: dspl/src/goertzel.c -> dspl/src/dft/goertzel_cmplx.c new file: dspl/src/dft/idft_cmplx.c new file: dspl/src/dft/ifft_cmplx.c deleted: dspl/src/fft.c deleted: dspl/src/fourier_series.c new file: dspl/src/math_poly.c new file: dspl/src/math_poly/cheby_poly1.c renamed: dspl/src/cheby.c -> dspl/src/math_poly/cheby_poly2.c new file: dspl/src/math_poly/poly_z2a_cmplx.c renamed: dspl/src/polyval.c -> dspl/src/math_poly/polyroots.c new file: dspl/src/math_poly/polyval.c new file: dspl/src/math_poly/polyval_cmplx.c modified: make.inc
2021-12-29 11:33:52 +00:00
/*
* Copyright (c) 2015-2019 Sergey Bakhurin
* Digital Signal Processing Library [http://dsplib.org]
*
* This file is part of libdspl-2.0.
*
* is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DSPL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <float.h>
#include "dspl.h"
#include "dspl_internal.h"
#ifdef DOXYGEN_ENGLISH
/*! ****************************************************************************
\ingroup DFT_GROUP
\fn int fft_create(fft_t* pfft, int n)
\brief Function creates and fill `fft_t` structure.
The function allocates memory and calculates twiddle factors
of the `n`-point FFT for the structure` fft_t`.
\param[in,out] pfft
Pointer to the `fft_t` object. \n
Pointer cannot be `NULL`. \n \n
\param[in] n
FFT size \f$n\f$. \n
FFT size can be composite
\f$n = n_0 \times n_1 \times n_2 \ldots \times n_p \times m\f$,
here \f$n_i = 2,3,5,7\f$, and \f$m \f$ --
arbitrary prime factor not exceeding 46340. \n
Thus, the FFT algorithm supports arbitrary integer lengths.
degrees of numbers 2,3,5,7, as well as their various combinations. \n
For example, with \f$ n = 725760 \f$ the structure will be successfully filled,
because
\f$ 725760 = 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 9 \cdot 16 \f$. \n
If \f$ n = 172804 = 43201 \cdot 4 \f$ then the structure will also be
successfully filled, because the simple factor in \f$ n \f$ does not
exceed 46340. \n
For size \f$ n = 13 \cdot 17 \cdot 23 \cdot 13 = 66079 \f$
the function will return an error since 66079 is greater than 46340 and is
not the result of the product of numbers 2,3,5,7. \n \n
\return
`RES_OK` if FFT structure is created and filled successfully. \n
Else \ref ERROR_CODE_GROUP "code error".
\note
Some compilers do not nullify its contents when creating a structure.
Therefore, it is recommended to reset the structure after its declaration:
\code{.cpp}
fft_t pfft = {0}; // fill and fields of fft_t as zeros
int n = 64; // FFT size
int err;
// Create fft_t object for 64-points FFT
err = fft_create(&pfft, n);
// ...................................
// Clear fft_t structure
fft_free(&pfft);
\endcode
Before exiting the program, the memory allocated in the structure
need to clear by \ref fft_free function. \n \n
\note
The "magic number" 46340 because \f$\sqrt{2^{31}} = 46340.95\f$. \n
\author Sergey Bakhurin www.dsplib.org
***************************************************************************** */
#endif
#ifdef DOXYGEN_RUSSIAN
/*! ****************************************************************************
\ingroup DFT_GROUP
\fn int fft_create(fft_t* pfft, int n)
\brief Заполнение структуры `fft_t` для алгоритма БПФ
Функция производит выделение памяти и рассчет векторов
поворотных коэффициентов `n`-точечного БПФ для структуры `fft_t`.
\param[in,out] pfft
Указатель на структуру `fft_t`. \n
Указатель не должен быть `NULL`. \n \n
\param[in] n
Размер БПФ \f$n\f$. \n
Размер БПФ может быть составным вида
\f$n = n_0 \times n_1 \times n_2 \ldots \times n_p \times m\f$,
где \f$n_i = 2,3,5,7\f$, а \f$m \f$ --
произвольный простой множитель не превосходящий 46340. \n
Таким образом алгоритм БПФ поддерживает произвольные длины, равные целой
степени чисел 2,3,5,7, а также различные их комбинации. \n
Так например, при \f$ n = 725760 \f$ структура будет успешно заполнена,
потому что
\f$725760 = 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 9 \cdot 16 \f$,
т.е. получается как произведение множителей 2,3,5,7. \n
При \f$ n = 172804 = 43201 \cdot 4 \f$ структура также будет успешно заполнена,
потому что простой множитель входящий в \f$n\f$ не превосходит 46340. \n
Для размера \f$ n = 13 \cdot 17 \cdot 23 \cdot 13 = 66079 \f$
функция вернет ошибку, поскольку 66079 больше 46340 и не является результатом
произведения чисел 2,3,5,7. \n \n
\return
`RES_OK` если структура заполнена успешно. \n
В противном случае \ref ERROR_CODE_GROUP "код ошибки". \n \n
\note
Некоторые компиляторы при создании структуры не обнуляют ее содержимое.
Поэтому рекомендуется произвести обнуление структуры после ее объявления:
\code{.cpp}
fft_t pfft = {0}; // объявляем объект fft_t
int n = 64; // Размер БПФ
int err;
// создаем объект для 64-точечного БПФ
err = fft_create(&pfft, n);
// ...................................
// очистить память объекта БПФ
fft_free(&pfft);
\endcode
Перед выходом из программы выделенную в структуре память
необходимо очистить функцией \ref fft_free . \n \n
\note
Магия числа 46340 заключается в том, что \f$\sqrt{2^{31}} = 46340.95\f$. \n
\author Бахурин Сергей www.dsplib.org
***************************************************************************** */
#endif
int DSPL_API fft_create(fft_t* pfft, int n)
{
int n1, n2, addr, s, k, m, nw, err;
double phi;
s = n;
nw = addr = 0;
if(pfft->n == n)
return RES_OK;
while(s > 1)
{
n2 = 1;
if(s%4096 == 0) { n2 = 4096; goto label_size; }
if(s%2048 == 0) { n2 = 2048; goto label_size; }
if(s%1024 == 0) { n2 = 1024; goto label_size; }
if(s%512 == 0) { n2 = 512; goto label_size; }
if(s%256 == 0) { n2 = 256; goto label_size; }
if(s%128 == 0) { n2 = 128; goto label_size; }
if(s% 64 == 0) { n2 = 64; goto label_size; }
if(s% 32 == 0) { n2 = 32; goto label_size; }
if(s% 16 == 0) { n2 = 16; goto label_size; }
if(s% 7 == 0) { n2 = 7; goto label_size; }
if(s% 8 == 0) { n2 = 8; goto label_size; }
if(s% 5 == 0) { n2 = 5; goto label_size; }
if(s% 4 == 0) { n2 = 4; goto label_size; }
if(s% 3 == 0) { n2 = 3; goto label_size; }
if(s% 2 == 0) { n2 = 2; goto label_size; }
label_size:
if(n2 == 1)
{
if(s > FFT_COMPOSITE_MAX)
{
err = ERROR_FFT_SIZE;
goto error_proc;
}
nw += s;
pfft->w = pfft->w ?
(complex_t*) realloc(pfft->w, nw*sizeof(complex_t)):
(complex_t*) malloc( nw*sizeof(complex_t));
for(k = 0; k < s; k++)
{
phi = - M_2PI * (double)k / (double)s;
RE(pfft->w[addr]) = cos(phi);
IM(pfft->w[addr]) = sin(phi);
addr++;
}
s = 1;
}
else
{
n1 = s / n2;
nw += s;
pfft->w = pfft->w ?
(complex_t*) realloc(pfft->w, nw*sizeof(complex_t)):
(complex_t*) malloc( nw*sizeof(complex_t));
for(k = 0; k < n1; k++)
{
for(m = 0; m < n2; m++)
{
phi = - M_2PI * (double)(k*m) / (double)s;
RE(pfft->w[addr]) = cos(phi);
IM(pfft->w[addr]) = sin(phi);
addr++;
}
}
}
s /= n2;
}
pfft->t0 = pfft->t0 ? (complex_t*) realloc(pfft->t0, n*sizeof(complex_t)):
(complex_t*) malloc( n*sizeof(complex_t));
pfft->t1 = pfft->t1 ? (complex_t*) realloc(pfft->t1, n*sizeof(complex_t)):
(complex_t*) malloc( n*sizeof(complex_t));
pfft->n = n;
/* w32 fill */
addr = 0;
for(k = 0; k < 4; k++)
{
for(m = 0; m < 8; m++)
{
phi = - M_2PI * (double)(k*m) / 32.0;
RE(pfft->w32[addr]) = cos(phi);
IM(pfft->w32[addr]) = sin(phi);
addr++;
}
}
/* w64 fill */
addr = 0;
for(k = 0; k < 8; k++)
{
for(m = 0; m < 8; m++)
{
phi = - M_2PI * (double)(k*m) / 64.0;
RE(pfft->w64[addr]) = cos(phi);
IM(pfft->w64[addr]) = sin(phi);
addr++;
}
}
/* w128 fill */
addr = 0;
for(k = 0; k < 8; k++)
{
for(m = 0; m < 16; m++)
{
phi = - M_2PI * (double)(k*m) / 128.0;
RE(pfft->w128[addr]) = cos(phi);
IM(pfft->w128[addr]) = sin(phi);
addr++;
}
}
/* w256 fill */
addr = 0;
for(k = 0; k < 16; k++)
{
for(m = 0; m < 16; m++)
{
phi = - M_2PI * (double)(k*m) / 256.0;
RE(pfft->w256[addr]) = cos(phi);
IM(pfft->w256[addr]) = sin(phi);
addr++;
}
}
/* w512 fill */
addr = 0;
for(k = 0; k < 16; k++)
{
for(m = 0; m < 32; m++)
{
phi = - M_2PI * (double)(k*m) / 512.0;
RE(pfft->w512[addr]) = cos(phi);
IM(pfft->w512[addr]) = sin(phi);
addr++;
}
}
/* w1024 fill */
if(pfft->w1024 == NULL)
{
pfft->w1024 = (complex_t*) malloc(1024 * sizeof(complex_t));
addr = 0;
for(k = 0; k < 32; k++)
{
for(m = 0; m < 32; m++)
{
phi = - M_2PI * (double)(k*m) / 1024.0;
RE(pfft->w1024[addr]) = cos(phi);
IM(pfft->w1024[addr]) = sin(phi);
addr++;
}
}
}
/* w2048 fill */
if(pfft->w2048 == NULL)
{
pfft->w2048= (complex_t*) malloc(2048 * sizeof(complex_t));
addr = 0;
for(k = 0; k < 32; k++)
{
for(m = 0; m < 64; m++)
{
phi = - M_2PI * (double)(k*m) / 2048.0;
RE(pfft->w2048[addr]) = cos(phi);
IM(pfft->w2048[addr]) = sin(phi);
addr++;
}
}
}
/* w4096 fill */
if(pfft->w4096 == NULL)
{
pfft->w4096= (complex_t*) malloc(4096 * sizeof(complex_t));
addr = 0;
for(k = 0; k < 16; k++)
{
for(m = 0; m < 256; m++)
{
phi = - M_2PI * (double)(k*m) / 4096.0;
RE(pfft->w4096[addr]) = cos(phi);
IM(pfft->w4096[addr]) = sin(phi);
addr++;
}
}
}
return RES_OK;
error_proc:
if(pfft->t0) free(pfft->t0);
if(pfft->t1) free(pfft->t1);
if(pfft->w) free(pfft->w);
pfft->n = 0;
return err;
}