2018-03-14 21:00:30 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2015-2018 Sergey Bakhurin
|
|
|
|
* Digital Signal Processing Library [http://dsplib.org]
|
|
|
|
*
|
|
|
|
* This file is part of libdspl-2.0.
|
2018-10-24 17:39:51 +00:00
|
|
|
*
|
2018-03-14 21:00:30 +00:00
|
|
|
* is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* DSPL is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
|
|
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include "dspl.h"
|
|
|
|
|
|
|
|
|
2018-10-24 17:39:51 +00:00
|
|
|
/******************************************************************************
|
2018-03-14 21:00:30 +00:00
|
|
|
Goertzel algorithm for real vector
|
2018-10-24 17:39:51 +00:00
|
|
|
*******************************************************************************/
|
2018-03-14 21:00:30 +00:00
|
|
|
int DSPL_API goertzel(double *x, int n, int *ind, int k, complex_t *y)
|
|
|
|
{
|
2018-10-24 17:39:51 +00:00
|
|
|
|
|
|
|
int m, p;
|
|
|
|
double wR, wI;
|
|
|
|
double alpha;
|
|
|
|
double v[3];
|
|
|
|
|
|
|
|
if(!x || !y || !ind)
|
|
|
|
return ERROR_PTR;
|
|
|
|
|
|
|
|
if(n < 1 || k < 1)
|
|
|
|
return ERROR_SIZE;
|
|
|
|
|
|
|
|
for(p = 0; p < k; p++)
|
|
|
|
{
|
|
|
|
wR = cos(M_2PI * (double)ind[p] / (double)n);
|
|
|
|
wI = sin(M_2PI * (double)ind[p] / (double)n);
|
|
|
|
|
|
|
|
alpha = 2.0 * wR;
|
|
|
|
v[0] = v[1] = v[2] = 0.0;
|
|
|
|
|
|
|
|
for(m = 0; m < n; m++)
|
|
|
|
{
|
|
|
|
v[2] = v[1];
|
|
|
|
v[1] = v[0];
|
|
|
|
v[0] = x[m]+alpha*v[1] - v[2];
|
|
|
|
}
|
|
|
|
RE(y[p]) = wR * v[0] - v[1];
|
|
|
|
IM(y[p]) = wI * v[0];
|
|
|
|
}
|
|
|
|
return RES_OK;
|
2018-03-14 21:00:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2018-10-24 17:39:51 +00:00
|
|
|
/******************************************************************************
|
2018-03-14 21:00:30 +00:00
|
|
|
Goertzel algorithm for complex vector
|
2018-10-24 17:39:51 +00:00
|
|
|
*******************************************************************************/
|
2018-03-14 21:00:30 +00:00
|
|
|
int DSPL_API goertzel_cmplx(complex_t *x, int n, int *ind, int k, complex_t *y)
|
|
|
|
{
|
2018-10-24 17:39:51 +00:00
|
|
|
|
|
|
|
int m, p;
|
|
|
|
complex_t w;
|
|
|
|
double alpha;
|
|
|
|
complex_t v[3];
|
|
|
|
|
|
|
|
if(!x || !y || !ind)
|
|
|
|
return ERROR_PTR;
|
|
|
|
|
|
|
|
if(n < 1 || k < 1)
|
|
|
|
return ERROR_SIZE;
|
|
|
|
|
|
|
|
for(p = 0; p < k; p++)
|
|
|
|
{
|
|
|
|
RE(w) = cos(M_2PI * (double)ind[p] / (double)n);
|
|
|
|
IM(w) = sin(M_2PI * (double)ind[p] / (double)n);
|
|
|
|
|
|
|
|
alpha = 2.0 * RE(w);
|
|
|
|
memset(v, 0, 3*sizeof(complex_t));
|
|
|
|
|
|
|
|
for(m = 0; m < n; m++)
|
|
|
|
{
|
|
|
|
RE(v[2]) = RE(v[1]);
|
|
|
|
RE(v[1]) = RE(v[0]);
|
|
|
|
RE(v[0]) = RE(x[m]) + alpha * RE(v[1]) - RE(v[2]);
|
|
|
|
|
|
|
|
IM(v[2]) = IM(v[1]);
|
|
|
|
IM(v[1]) = IM(v[0]);
|
|
|
|
IM(v[0]) = IM(x[m]) + alpha * IM(v[1]) - IM(v[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
RE(y[p]) = CMRE(w, v[0]) - RE(v[1]);
|
|
|
|
IM(y[p]) = CMIM(w, v[0]) - IM(v[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return RES_OK;
|
2018-03-14 21:00:30 +00:00
|
|
|
}
|
2018-10-24 17:39:51 +00:00
|
|
|
|