libdspl-2.0/dspl/src/math_ellipj/ellip_acd.c

131 wiersze
4.4 KiB
C
Czysty Zwykły widok Historia

New project structure for filter design algorithms Changes to be committed: deleted: dspl/src/conv.c new file: dspl/src/convolution.c new file: dspl/src/convolution/conv.c new file: dspl/src/convolution/conv_cmplx.c new file: dspl/src/convolution/conv_fft.c new file: dspl/src/convolution/conv_fft_cmplx.c new file: dspl/src/convolution/filter_iir.c deleted: dspl/src/ellipj.c deleted: dspl/src/filter_an.c deleted: dspl/src/filter_ap.c new file: dspl/src/filter_design.c new file: dspl/src/filter_design/bilinear.c new file: dspl/src/filter_design/butter_ap.c new file: dspl/src/filter_design/butter_ap_zp.c new file: dspl/src/filter_design/cheby1_ap.c new file: dspl/src/filter_design/cheby1_ap_zp.c new file: dspl/src/filter_design/cheby2_ap.c new file: dspl/src/filter_design/cheby2_ap_wp1.c new file: dspl/src/filter_design/cheby2_ap_zp.c new file: dspl/src/filter_design/ellip_ap.c new file: dspl/src/filter_design/ellip_ap_zp.c new file: dspl/src/filter_design/filter_freq_resp.c new file: dspl/src/filter_design/filter_ws1.c new file: dspl/src/filter_design/filter_zp2ab.c renamed: dspl/src/filter_fir.c -> dspl/src/filter_design/fir_linphase.c new file: dspl/src/filter_design/fir_linphase_lpf.c new file: dspl/src/filter_design/freqs.c new file: dspl/src/filter_design/freqs2time.c new file: dspl/src/filter_design/freqs_cmplx.c new file: dspl/src/filter_design/freqz.c new file: dspl/src/filter_design/group_delay.c renamed: dspl/src/filter_iir.c -> dspl/src/filter_design/iir.c new file: dspl/src/filter_design/iir_ap.c new file: dspl/src/filter_design/low2bp.c new file: dspl/src/filter_design/low2bs.c new file: dspl/src/filter_design/low2high.c new file: dspl/src/filter_design/low2low.c new file: dspl/src/filter_design/phase_delay.c new file: dspl/src/filter_design/ratcompos.c deleted: dspl/src/filter_ft.c new file: dspl/src/math_ellipj.c new file: dspl/src/math_ellipj/ellip_acd.c new file: dspl/src/math_ellipj/ellip_acd_cmplx.c new file: dspl/src/math_ellipj/ellip_asn.c new file: dspl/src/math_ellipj/ellip_asn_cmplx.c new file: dspl/src/math_ellipj/ellip_cd.c new file: dspl/src/math_ellipj/ellip_cd_cmplx.c new file: dspl/src/math_ellipj/ellip_landen.c new file: dspl/src/math_ellipj/ellip_modulareq.c new file: dspl/src/math_ellipj/ellip_rat.c new file: dspl/src/math_ellipj/ellip_sn.c new file: dspl/src/math_ellipj/ellip_sn_cmplx.c new file: dspl/src/types.c renamed: dspl/src/complex.c -> dspl/src/types/cmplx2re.c new file: dspl/src/types/re2cmplx.c new file: dspl/src/unwrap.c
2021-12-29 13:31:00 +00:00
/*
* Copyright (c) 2015-2019 Sergey Bakhurin
* Digital Signal Processing Library [http://dsplib.org]
*
* This file is part of DSPL.
*
* is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DSPL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "dspl.h"
#ifdef DOXYGEN_ENGLISH
/*! ****************************************************************************
\ingroup SPEC_MATH_ELLIP_GROUP
\fn int ellip_acd(double* w, int n, double k, double* u)
\brief Inverse Jacobi elliptic function \f$ u = \textrm{cd}^{-1}(w, k)\f$
of the real vector argument
Function calculates inverse Jacobi elliptic function
\f$ u = \textrm{cd}^{-1}(w, k)\f$ of the real vector `w`. \n
\param[in] w
Pointer to the argument vector \f$ w \f$. \n
Vector size is `[n x 1]`. \n
Memory must be allocated. \n \n
\param[in] n
Size of vector `w`. \n
\param[in] k
Elliptical modulus \f$ k \f$. \n
Elliptical modulus is real parameter,
which values can be from 0 to 1. \n \n
\param[out] u
Pointer to the vector of inverse Jacobi elliptic function
\f$ u = \textrm{cd}^{-1}(w, k)\f$. \n
Vector size is `[n x 1]`. \n
Memory must be allocated. \n \n
\return
`RES_OK` successful exit, else \ref ERROR_CODE_GROUP "error code". \n
\author Sergey Bakhurin www.dsplib.org
***************************************************************************** */
#endif
#ifdef DOXYGEN_RUSSIAN
/*! ****************************************************************************
\ingroup SPEC_MATH_ELLIP_GROUP
\fn int ellip_acd(double* w, int n, double k, double* u)
\brief Обратная эллиптическая функция Якоби
\f$ u = \textrm{cd}^{-1}(w, k)\f$ вещественного аргумента
Функция рассчитывает значения обратной эллиптической функции
\f$ u = \textrm{cd}^{-1}(w, k)\f$ для вещественного вектора `w`. \n
Для расчета используется итерационный алгоритм на основе преобразования
Ландена. \n
\param[in] w
Указатель на массив вектора переменной \f$ w \f$. \n
Размер вектора `[n x 1]`. \n
Память должна быть выделена. \n \n
\param[in] n
Размер вектора `w`. \n
\param[in] k Значение эллиптического модуля \f$ k \f$.
Эллиптический модуль -- вещественный параметр,
принимающий значения от 0 до 1. \n \n
\param[out] u
Указатель на вектор значений обратной эллиптической
функции \f$ u = \textrm{cd}^{-1}(w, k)\f$. \n
Размер вектора `[n x 1]`. \n
Память должна быть выделена. \n \n
\return
`RES_OK` Расчет произведен успешно. \n
В противном случае \ref ERROR_CODE_GROUP "код ошибки". \n
\author Бахурин Сергей www.dsplib.org
***************************************************************************** */
#endif
int DSPL_API ellip_acd(double* w, int n, double k, double* u)
{
double lnd[ELLIP_ITER], t;
int i, m;
if(!u || !w)
return ERROR_PTR;
if(n<1)
return ERROR_SIZE;
if(k < 0.0 || k>= 1.0)
return ERROR_ELLIP_MODULE;
ellip_landen(k,ELLIP_ITER, lnd);
for(m = 0; m < n; m++)
{
u[m] = w[m];
for(i = 1; i < ELLIP_ITER; i++)
{
t = lnd[i-1]*u[m];
t *= t;
t = 1.0 + sqrt(1.0 - t);
u[m] = 2.0 * u[m] / (t+t*lnd[i]);
}
u[m] = 2.0 * acos(u[m]) / M_PI;
}
return RES_OK;
}