libdspl-2.0/dspl/src/filter_design/ellip_ap_zp.c

308 wiersze
9.4 KiB
C
Czysty Zwykły widok Historia

New project structure for filter design algorithms Changes to be committed: deleted: dspl/src/conv.c new file: dspl/src/convolution.c new file: dspl/src/convolution/conv.c new file: dspl/src/convolution/conv_cmplx.c new file: dspl/src/convolution/conv_fft.c new file: dspl/src/convolution/conv_fft_cmplx.c new file: dspl/src/convolution/filter_iir.c deleted: dspl/src/ellipj.c deleted: dspl/src/filter_an.c deleted: dspl/src/filter_ap.c new file: dspl/src/filter_design.c new file: dspl/src/filter_design/bilinear.c new file: dspl/src/filter_design/butter_ap.c new file: dspl/src/filter_design/butter_ap_zp.c new file: dspl/src/filter_design/cheby1_ap.c new file: dspl/src/filter_design/cheby1_ap_zp.c new file: dspl/src/filter_design/cheby2_ap.c new file: dspl/src/filter_design/cheby2_ap_wp1.c new file: dspl/src/filter_design/cheby2_ap_zp.c new file: dspl/src/filter_design/ellip_ap.c new file: dspl/src/filter_design/ellip_ap_zp.c new file: dspl/src/filter_design/filter_freq_resp.c new file: dspl/src/filter_design/filter_ws1.c new file: dspl/src/filter_design/filter_zp2ab.c renamed: dspl/src/filter_fir.c -> dspl/src/filter_design/fir_linphase.c new file: dspl/src/filter_design/fir_linphase_lpf.c new file: dspl/src/filter_design/freqs.c new file: dspl/src/filter_design/freqs2time.c new file: dspl/src/filter_design/freqs_cmplx.c new file: dspl/src/filter_design/freqz.c new file: dspl/src/filter_design/group_delay.c renamed: dspl/src/filter_iir.c -> dspl/src/filter_design/iir.c new file: dspl/src/filter_design/iir_ap.c new file: dspl/src/filter_design/low2bp.c new file: dspl/src/filter_design/low2bs.c new file: dspl/src/filter_design/low2high.c new file: dspl/src/filter_design/low2low.c new file: dspl/src/filter_design/phase_delay.c new file: dspl/src/filter_design/ratcompos.c deleted: dspl/src/filter_ft.c new file: dspl/src/math_ellipj.c new file: dspl/src/math_ellipj/ellip_acd.c new file: dspl/src/math_ellipj/ellip_acd_cmplx.c new file: dspl/src/math_ellipj/ellip_asn.c new file: dspl/src/math_ellipj/ellip_asn_cmplx.c new file: dspl/src/math_ellipj/ellip_cd.c new file: dspl/src/math_ellipj/ellip_cd_cmplx.c new file: dspl/src/math_ellipj/ellip_landen.c new file: dspl/src/math_ellipj/ellip_modulareq.c new file: dspl/src/math_ellipj/ellip_rat.c new file: dspl/src/math_ellipj/ellip_sn.c new file: dspl/src/math_ellipj/ellip_sn_cmplx.c new file: dspl/src/types.c renamed: dspl/src/complex.c -> dspl/src/types/cmplx2re.c new file: dspl/src/types/re2cmplx.c new file: dspl/src/unwrap.c
2021-12-29 13:31:00 +00:00
/*
* Copyright (c) 2015-2019 Sergey Bakhurin
* Digital Signal Processing Library [http://dsplib.org]
*
* This file is part of libdspl-2.0.
*
* is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DSPL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "dspl.h"
#ifdef DOXYGEN_ENGLISH
/*! ****************************************************************************
\ingroup IIR_FILTER_DESIGN_GROUP
\fn int ellip_ap_zp(int ord, double rp, double rs, complex_t* z, int* nz,
complex_t* p, int* np)
\brief
Function calculates arrays of zeros and poles for analog normlized lowpass
elliptic filter transfer function \f$ H(s) \f$ order `ord` .
\param[in] ord
Filter order. \n
Number of zeros and poles of filter can be less or equal `ord`. \n
\n
\param[in] rp
Magnitude ripple in passband (dB). \n
This parameter sets maximum filter distortion from 0 to 1 rad/s frequency. \n
Parameter must be positive. \n
\n
\param[in] rs
Suppression level in stopband (dB). \n
This parameter sets filter suppression
for \f$\omega \geq 1\f$ rad/s frequency. \n
Parameter must be positive. \n
\n
\param[out] z
Pointer to the \f$ H(s) \f$ zeros array. \n
Maximum vector size is `[ord x 1]`. \n
Memory must be allocated for maximum vector size. \n
\n
\param[out] nz
Pointer to the variable which keep number of finite zeros \f$ H(s) \f$. \n
Number of finite zeros which was calculated and saved in vector `z`. \n
Pointer cannot be `NULL`. \n
\n
\param[out] p
Pointer to the \f$ H(s) \f$ poles array. \n
Maximum vector size is `[ord x 1]`. \n
Memory must be allocated for maximum vector size. \n
\n
\param[out] np
Pointer to the variable which keep number of
calculated poles of \f$ H(s) \f$. \n
Pointer cannot be `NULL`. \n
\n
\return
`RES_OK` if zeros and poles is calculated successfully. \n
Else \ref ERROR_CODE_GROUP "code error".
\n
Example of normalized elliptic lowpass filter zeros and poles calculation:
\include ellip_ap_zp_test.c
Result:
\verbatim
Elliptic filter zeros: 6
z[ 0] = 0.000 +1.053 j
z[ 1] = 0.000 -1.053 j
z[ 2] = 0.000 +1.136 j
z[ 3] = 0.000 -1.136 j
z[ 4] = 0.000 +1.626 j
z[ 5] = 0.000 -1.626 j
Elliptic filter poles: 7
p[ 0] = -0.358 +0.000 j
p[ 1] = -0.011 +1.000 j
p[ 2] = -0.011 -1.000 j
p[ 3] = -0.060 +0.940 j
p[ 4] = -0.060 -0.940 j
p[ 5] = -0.206 +0.689 j
p[ 6] = -0.206 -0.689 j
\endverbatim
\n
In `dat` folder will be created `ellip_ap_z.txt` and
`ellip_ap_z.txt` files which keeps zeros and poles vectors. \n
In addition, GNUPLOT will build the following graphs
from data stored in the files:
\image html ellip_ap_zp_test.png
\author Sergey Bakhurin www.dsplib.org
***************************************************************************** */
#endif
#ifdef DOXYGEN_RUSSIAN
/*! ****************************************************************************
\ingroup IIR_FILTER_DESIGN_GROUP
\fn int ellip_ap_zp(int ord, double rp, double rs, complex_t* z, int* nz,
complex_t* p, int* np)
\brief
Расчет массивов нулей и полюсов передаточной функции \f$ H(s) \f$
аналогового нормированного эллиптического ФНЧ.
\param[in] ord
Порядок фильтра. \n
\n
\param[in] rp
Неравномерность АЧХ в полосе пропускания (дБ). \n
Параметр задает уровень искажений в полосе от 0 до 1 рад/с. \n
Значение должно быть положительным. \n
\n
\param[in] rs
Уровень подавления АЧХ в полосе загражения (дБ). \n
Параметр задает уровень подавления сигнала в полосе частот от 1 рад/с и выше. \n
Значение должно быть положительным. \n
\n
\param[out] z
Указатель на массив комплексных нулей передаточной функции \f$H(s)\f$. \n
Максимальный размер вектора вектора `[ord x 1]`. \n
Память должна быть выделена. \n
\n
\param[out] nz
Указатель на переменную количества нулей передаточной функции \f$H(s)\f$. \n
По данному указателю будет записано количество нулей фильтра, которые были
рассчитаны и помещены в вектор `z`. \n
Память должна быть выделена. \n
\n
\param[out] p
Указатель на массив комплексных полюсов передаточной функции \f$H(s)\f$. \n
Максимальный размер вектора вектора `[ord x 1]`. \n
Память должна быть выделена. \n
\n
\param[out] np
Указатель на переменную количества полюсов передаточной функции \f$H(s)\f$. \n
По данному указателю будет записано количество нулей
фильтра, которые были
рассчитаны и помещены в вектор `p`. \n
Память должна быть выделена. \n
\n
\return
`RES_OK` --- массивы нулей и полюсов рассчитаны успешно. \n
В противном случае \ref ERROR_CODE_GROUP "код ошибки". \n
Пример использования функции `cheby2_ap_zp`:
Пример программы рассчета нулей и полюсов нормированного
эллиптического ФНЧ :
\include ellip_ap_zp_test.c
Результат выполнения программы:
\verbatim
Elliptic filter zeros: 6
z[ 0] = 0.000 +1.053 j
z[ 1] = 0.000 -1.053 j
z[ 2] = 0.000 +1.136 j
z[ 3] = 0.000 -1.136 j
z[ 4] = 0.000 +1.626 j
z[ 5] = 0.000 -1.626 j
Elliptic filter poles: 7
p[ 0] = -0.358 +0.000 j
p[ 1] = -0.011 +1.000 j
p[ 2] = -0.011 -1.000 j
p[ 3] = -0.060 +0.940 j
p[ 4] = -0.060 -0.940 j
p[ 5] = -0.206 +0.689 j
p[ 6] = -0.206 -0.689 j
\endverbatim
\n
В каталоге `dat` будет создан файлы `ellip_ap_z.txt` и `ellip_ap_z.txt`,
хранящие наборы нулей и полюсов на комплексной плоскости. \n
Пакет GNUPLOT произведет построение карты полюсов по
сохранненным в `dat/ellip_ap_z.txt` и `dat/ellip_ap_p.txt` данным:
\image html ellip_ap_zp_test.png
\author
Бахурин Сергей
www.dsplib.org
***************************************************************************** */
#endif
int DSPL_API ellip_ap_zp(int ord, double rp, double rs,
complex_t* z, int* nz, complex_t* p, int* np)
{
double es, ep;
int L, r, n, res;
int iz, ip;
double ke, k, u, t;
complex_t tc, v0, jv0;
if(rp < 0 || rp == 0)
return ERROR_FILTER_RP;
if(rs < 0 || rs == 0)
return ERROR_FILTER_RS;
if(ord < 1)
return ERROR_FILTER_ORD;
if(!z || !p || !nz || !np)
return ERROR_PTR;
es = sqrt(pow(10.0, rs*0.1) - 1.0);
ep = sqrt(pow(10.0, rp*0.1) - 1.0);
ke = ep / es;
r = ord % 2;
L = (int)((ord-r)/2);
res = ellip_modulareq(rp, rs, ord, &k);
if(res != RES_OK)
return res;
// v0
RE(tc) = 0.0;
IM(tc) = 1.0 / ep;
ellip_asn_cmplx(&tc, 1, ke, &v0);
t = RE(v0);
RE(v0) = IM(v0) / (double)ord;
IM(v0) = -t / (double)ord;
RE(jv0) = -IM(v0);
IM(jv0) = RE(v0);
iz = ip = 0;
if(r)
{
res = ellip_sn_cmplx(&jv0, 1, k, &tc);
if(res != RES_OK)
return res;
RE(p[0]) = -IM(tc);
IM(p[0]) = RE(tc);
ip = 1;
}
for(n = 0; n < L; n++)
{
u = (double)(2 * n + 1)/(double)ord;
res = ellip_cd(& u, 1, k, &t);
if(res != RES_OK)
return res;
RE(z[iz]) = RE(z[iz+1]) = 0.0;
IM(z[iz]) = 1.0/(k*t);
IM(z[iz+1]) = -1.0/(k*t);
iz+=2;
RE(tc) = u - RE(jv0);
IM(tc) = - IM(jv0);
res = ellip_cd_cmplx(&tc, 1, k, p+ip+1);
if(res != RES_OK)
return res;
RE(p[ip]) = -IM(p[ip+1]);
IM(p[ip]) = RE(p[ip+1]);
RE(p[ip+1]) = RE(p[ip]);
IM(p[ip+1]) = -IM(p[ip]);
ip+=2;
}
*nz = iz;
*np = ip;
return RES_OK;
}