kopia lustrzana https://github.com/learn-awesome/learndb
105 wiersze
3.8 KiB
JavaScript
105 wiersze
3.8 KiB
JavaScript
const https = require('https'); // Import for webscraping (fetchContentFromURL(url) function
|
|
|
|
// Placeholder function to fetch content from URL using a web scraping service
|
|
async function fetchContentFromURL(url) {
|
|
return new Promise((resolve, reject) => {
|
|
https.get(url, (response) => {
|
|
let data = '';
|
|
|
|
// A chunk of data has been received.
|
|
response.on('data', (chunk) => {
|
|
data += chunk;
|
|
});
|
|
|
|
// The whole response has been received.
|
|
response.on('end', () => {
|
|
resolve(data);
|
|
});
|
|
}).on("error", (error) => {
|
|
reject(`Error fetching URL: ${error.message}`);
|
|
});
|
|
});
|
|
}
|
|
|
|
// Placeholder function to simplify the content for GPT analysis
|
|
function simplifyContent(content) {
|
|
// Implement logic to simplify the content for GPT analysis
|
|
// Remove unnecessary elements, clean HTML tags, format content, etc.
|
|
// Placeholder code
|
|
const simplifiedContent = "Simplified content suitable for GPT analysis";
|
|
return simplifiedContent;
|
|
}
|
|
|
|
// Placeholder function to perform GPT analysis for media type and topics using Mistral-7b via OpenRouter
|
|
async function performGPTAnalysis(content) {
|
|
// Implement logic to send content to Mistral-7b via OpenRouter for GPT analysis
|
|
// Send content and receive GPT analysis response
|
|
// Placeholder code
|
|
const inferredMediaType = "article";
|
|
const extractedTopics = ["topic1", "topic2"];
|
|
return { inferredMediaType, extractedTopics };
|
|
}
|
|
|
|
// Placeholder function to map inferred values to predefined formats and topics
|
|
function mapInferredValues(mediaType, topics) {
|
|
// Implement logic to map inferred media type and topics to predefined formats and topics
|
|
// Match inferred values with predefined taxonomy
|
|
// Placeholder code
|
|
const predefinedMediaType = "Article";
|
|
const predefinedTopics = ["Topic 1", "Topic 2"];
|
|
return { predefinedMediaType, predefinedTopics };
|
|
}
|
|
|
|
// Placeholder function to format the response
|
|
function formatResponse(predefinedMediaType, predefinedTopics) {
|
|
// Implement logic to format the extracted metadata into the desired response structure
|
|
// Construct the response object
|
|
// Placeholder code
|
|
const response = {
|
|
format: predefinedMediaType,
|
|
topics: predefinedTopics,
|
|
// Other metadata fields if needed
|
|
};
|
|
return response;
|
|
}
|
|
|
|
export async function handler(event) {
|
|
try {
|
|
// Extract URL and API Key from the request body
|
|
const { url, apiKey } = JSON.parse(event.body);
|
|
|
|
// Validate if URL and API Key are present
|
|
if (!url || !apiKey) {
|
|
return {
|
|
statusCode: 400,
|
|
body: JSON.stringify({ error: 'URL and API Key are required' }),
|
|
};
|
|
}
|
|
|
|
// Step 1: Fetch content from the URL using a web scraping service
|
|
const fetchedContent = await fetchContentFromURL(url);
|
|
|
|
// Step 2: Simplify the fetched content for GPT analysis
|
|
const simplifiedContent = simplifyContent(fetchedContent);
|
|
|
|
// Step 3: Perform GPT analysis for media type and topics
|
|
const { inferredMediaType, extractedTopics } = await performGPTAnalysis(simplifiedContent);
|
|
|
|
// Step 4: Map inferred values to predefined formats and topics
|
|
const { predefinedMediaType, predefinedTopics } = mapInferredValues(inferredMediaType, extractedTopics);
|
|
|
|
// Step 5: Format the response
|
|
const formattedResponse = formatResponse(predefinedMediaType, predefinedTopics);
|
|
|
|
// Return the formatted response
|
|
return {
|
|
statusCode: 200,
|
|
body: JSON.stringify(fetchedContent),
|
|
};
|
|
} catch (error) {
|
|
return {
|
|
statusCode: 500,
|
|
body: JSON.stringify({ error: 'Something went wrong' }),
|
|
};
|
|
}
|
|
} |