const https = require('https'); // Import for webscraping (fetchContentFromURL(url) function import { OpenAIApi, Configuration } from 'openai'; import { fetch } from 'node-fetch'; // Function to fetch content from URL using a web scraping service async function fetchContentFromURL(url) { try { const response = await fetch(url); if (!response.ok) { throw new Error(`HTTP error! status: ${response.status}`); } return await response.text(); } catch (error) { console.error(`Could not fetch content from URL: ${error}`); throw error; } } function simplifyContent(content) { // Remove HTML tags let simplifiedContent = content.replace(/<[^>]*>/g, ''); // Remove CSS within style tags simplifiedContent = simplifiedContent.replace(/]*>.*<\/style>/gms, ''); // Remove inline CSS and JavaScript within script tags simplifiedContent = simplifiedContent.replace(/]*>.*<\/script>/gms, ''); // Remove special characters and HTML entities simplifiedContent = simplifiedContent.replace(/[^\w\s]/gi, '').replace(/&[a-z]+;/gi, ''); // Remove URLs simplifiedContent = simplifiedContent.replace(/https?:\/\/[^\s]+/gi, ''); // Normalize whitespace simplifiedContent = simplifiedContent.replace(/\s+/g, ' ').trim(); // Basic language simplification simplifiedContent = simplifiedContent.toLowerCase(); // // Simple summarization: taking the first few sentences // const sentences = simplifiedContent.split('. '); // const summarizedContent = sentences.slice(0, Math.min(5, sentences.length)).join('. '); return simplifiedContent; } // Placeholder function to perform GPT analysis for media type and topics using Mistral-7b via OpenRouter async function performGPTAnalysis(content) { // Implement logic to send content to Mistral-7b via OpenRouter for GPT analysis // Send content and receive GPT analysis response // Placeholder code const inferredMediaType = "article"; const extractedTopics = ["topic1", "topic2"]; return { inferredMediaType, extractedTopics }; } // Placeholder function to map inferred values to predefined formats and topics function mapInferredValues(mediaType, topics) { // Implement logic to map inferred media type and topics to predefined formats and topics // Match inferred values with predefined taxonomy // Placeholder code const predefinedMediaType = "Article"; const predefinedTopics = ["Topic 1", "Topic 2"]; return { predefinedMediaType, predefinedTopics }; } // Placeholder function to format the response function formatResponse(predefinedMediaType, predefinedTopics) { // Implement logic to format the extracted metadata into the desired response structure // Construct the response object // Placeholder code const response = { format: predefinedMediaType, topics: predefinedTopics, }; return response; } export async function handler(event) { try { // Extract URL and API Key from the request body const { url, apiKey } = JSON.parse(event.body); // Validate if URL and API Key are present if (!url || !apiKey) { return { statusCode: 400, body: JSON.stringify({ error: 'URL and API Key are required' }), }; } // Step 1: Fetch content from the URL using a web scraping service const fetchedContent = await fetchContentFromURL(url); // Step 2: Simplify the fetched content for GPT analysis const simplifiedContent = simplifyContent(fetchedContent); // Step 3: Perform GPT analysis for media type and topics const { inferredMediaType, extractedTopics } = await performGPTAnalysis(simplifiedContent); // Step 4: Map inferred values to predefined formats and topics const { predefinedMediaType, predefinedTopics } = mapInferredValues(inferredMediaType, extractedTopics); // Step 5: Format the response const formattedResponse = formatResponse(predefinedMediaType, predefinedTopics); // Return the formatted response return { statusCode: 200, body: JSON.stringify(fetchedContent), }; } catch (error) { return { statusCode: 500, body: JSON.stringify({ error: 'Something went wrong' }), }; } }