learndb/netlify/functions/handleMetadata.js

134 wiersze
5.0 KiB
JavaScript
Czysty Zwykły widok Historia

2023-11-23 16:17:56 +00:00
// import fetch from 'node-fetch'; // Import for webscraping (fetchContentFromURL(url) function
// const OpenAI = require('openai'); // Import for performGPTAnalysis(content) function
// Function to fetch content from URL using a web scraping service
async function fetchContentFromURL(url) {
2023-11-23 16:16:07 +00:00
// try {
// // Make an HTTP GET request to the provided URL
// const response = await fetch(url);
// // Check if the response status is OK (status code 200)
// if (!response.ok) {
// throw new Error(`Failed to fetch URL: ${response.statusText}`);
// }
// // Read the response body as text (HTML content)
// const content = await response.text();
// // Return the extracted content
// return content;
// } catch (error) {
// throw new Error(`Error fetching URL: ${error.message}`);
// }
return "Hello maria";
2023-11-22 12:33:41 +00:00
}
// Placeholder function to simplify the content for GPT analysis
function simplifyContent(content) {
// Implement logic to simplify the content for GPT analysis
// Remove unnecessary elements, clean HTML tags, format content, etc.
// Placeholder code
const simplifiedContent = "Simplified content suitable for GPT analysis";
return simplifiedContent;
2023-11-22 12:33:41 +00:00
}
// Placeholder function to perform GPT analysis for media type and topics using Mistral-7b via OpenRouter
async function performGPTAnalysis(content) {
// Implement logic to send content to Mistral-7b via OpenRouter for GPT analysis
// Send content and receive GPT analysis response
// Default code from OpenRouter documentation for the Mistral-7b model
// Retrieved from https://openrouter.ai/models/mistralai/mistral-7b-instruct?tab=api
// Using OpenAI's client API makes this easily replaceable with other models (ex. GPT-4)
```
const openai = new OpenAI({
baseURL: "https://openrouter.ai/api/v1",
apiKey: $OPENROUTER_API_KEY,
defaultHeaders: {
"HTTP-Referer": $YOUR_SITE_URL, // Optional, for including your app on openrouter.ai rankings.
"X-Title": $YOUR_SITE_NAME, // Optional. Shows in rankings on openrouter.ai.
},
// dangerouslyAllowBrowser: true,
})
async function main() {
const completion = await openai.chat.completions.create({
model: "mistralai/mistral-7b-instruct",
messages: [
{ role: "user", content: "Say this is a test" }
],
})
console.log(completion.choices[0].message)
}
main()
```
// Placeholder code
const inferredMediaType = "article";
const extractedTopics = ["topic1", "topic2"];
return { inferredMediaType, extractedTopics };
2023-11-22 12:33:41 +00:00
}
// Placeholder function to map inferred values to predefined formats and topics
function mapInferredValues(mediaType, topics) {
// Implement logic to map inferred media type and topics to predefined formats and topics
// Match inferred values with predefined taxonomy
// Placeholder code
const predefinedMediaType = "Article";
const predefinedTopics = ["Topic 1", "Topic 2"];
return { predefinedMediaType, predefinedTopics };
2023-11-22 12:33:41 +00:00
}
// Placeholder function to format the response
function formatResponse(predefinedMediaType, predefinedTopics) {
// Implement logic to format the extracted metadata into the desired response structure
// Construct the response object
// Placeholder code
const response = {
2023-11-22 20:44:21 +00:00
format: predefinedMediaType,
2023-11-23 15:42:06 +00:00
topics: predefinedTopics,
2023-11-22 12:33:41 +00:00
// Other metadata fields if needed
};
return response;
2023-11-22 12:33:41 +00:00
}
export async function handler(event) {
try {
2023-11-22 12:33:41 +00:00
// Extract URL and API Key from the request body
const { url, apiKey } = JSON.parse(event.body);
// Validate if URL and API Key are present
if (!url || !apiKey) {
return {
statusCode: 400,
body: JSON.stringify({ error: 'URL and API Key are required' }),
};
}
// Step 1: Fetch content from the URL using a web scraping service
const fetchedContent = await fetchContentFromURL(url);
// Step 2: Simplify the fetched content for GPT analysis
const simplifiedContent = simplifyContent(fetchedContent);
// Step 3: Perform GPT analysis for media type and topics
const { inferredMediaType, extractedTopics } = await performGPTAnalysis(simplifiedContent);
// Step 4: Map inferred values to predefined formats and topics
const { predefinedMediaType, predefinedTopics } = mapInferredValues(inferredMediaType, extractedTopics);
// Step 5: Format the response
const formattedResponse = formatResponse(predefinedMediaType, predefinedTopics);
// Return the formatted response
return {
statusCode: 200,
2023-11-23 16:23:35 +00:00
body: JSON.stringify(formattedResponse),
2023-11-22 12:33:41 +00:00
};
} catch (error) {
2023-11-22 12:33:41 +00:00
return {
statusCode: 500,
body: JSON.stringify({ error: 'Something went wrong' }),
};
}
2023-11-22 12:33:41 +00:00
}