# Universal functions (ufunc) --- A `ufunc`, short for "`universal function`," is a fundamental concept in NumPy, a powerful library for numerical computing in Python. Universal functions are highly optimized, element-wise functions designed to perform operations on data stored in NumPy arrays. ## Uses of Ufuncs in NumPy Universal functions (ufuncs) in NumPy provide a wide range of functionalities for efficient and powerful numerical computations. Below is a detailed explanation of their uses: ### 1. **Element-wise Operations** Ufuncs perform operations on each element of the arrays independently. ```python import numpy as np A = np.array([1, 2, 3, 4]) B = np.array([5, 6, 7, 8]) # Element-wise addition np.add(A, B) # Output: array([ 6, 8, 10, 12]) ``` ### 2. **Broadcasting** Ufuncs support broadcasting, allowing operations on arrays with different shapes, making it possible to perform operations without explicitly reshaping arrays. ```python C = np.array([1, 2, 3]) D = np.array([[1], [2], [3]]) # Broadcasting addition np.add(C, D) # Output: array([[2, 3, 4], [3, 4, 5], [4, 5, 6]]) ``` ### 3. **Vectorization** Ufuncs are vectorized, meaning they are implemented in low-level C code, allowing for fast execution and avoiding the overhead of Python loops. ```python # Vectorized square root np.sqrt(A) # Output: array([1., 1.41421356, 1.73205081, 2.]) ``` ### 4. **Type Flexibility** Ufuncs handle various data types and perform automatic type casting as needed. ```python E = np.array([1.0, 2.0, 3.0]) F = np.array([4, 5, 6]) # Addition with type casting np.add(E, F) # Output: array([5., 7., 9.]) ``` ### 5. **Reduction Operations** Ufuncs support reduction operations, such as summing all elements of an array or finding the product of all elements. ```python # Summing all elements np.add.reduce(A) # Output: 10 # Product of all elements np.multiply.reduce(A) # Output: 24 ``` ### 6. **Accumulation Operations** Ufuncs can perform accumulation operations, which keep a running tally of the computation. ```python # Cumulative sum np.add.accumulate(A) # Output: array([ 1, 3, 6, 10]) ``` ### 7. **Reduceat Operations** Ufuncs can perform segmented reductions using the `reduceat` method, which applies the ufunc at specified intervals. ```python G = np.array([0, 1, 2, 3, 4, 5, 6, 7]) indices = [0, 2, 5] np.add.reduceat(G, indices) # Output: array([ 1, 9, 18]) ``` ### 8. **Outer Product** Ufuncs can compute the outer product of two arrays, producing a matrix where each element is the result of applying the ufunc to each pair of elements from the input arrays. ```python # Outer product np.multiply.outer([1, 2, 3], [4, 5, 6]) # Output: array([[ 4, 5, 6], # [ 8, 10, 12], # [12, 15, 18]]) ``` ### 9. **Out Parameter** Ufuncs can use the `out` parameter to store results in a pre-allocated array, saving memory and improving performance. ```python result = np.empty_like(A) np.multiply(A, B, out=result) # Output: array([ 5, 12, 21, 32]) ``` # Create Your Own Ufunc You can create custom ufuncs for specific needs using np.frompyfunc or np.vectorize, allowing Python functions to behave like ufuncs. Here, we are using `frompyfunc()` which takes three argument: 1. function - the name of the function. 2. inputs - the number of input (arrays). 3. outputs - the number of output arrays. ```python def my_add(x, y): return x + y my_add_ufunc = np.frompyfunc(my_add, 2, 1) my_add_ufunc(A, B) # Output: array([ 6, 8, 10, 12], dtype=object) ``` # Some Common Ufunc are Here are some commonly used ufuncs in NumPy: - **Arithmetic**: `np.add`, `np.subtract`, `np.multiply`, `np.divide` - **Trigonometric**: `np.sin`, `np.cos`, `np.tan` - **Exponential and Logarithmic**: `np.exp`, `np.log`, `np.log10` - **Comparison**: `np.maximum`, `np.minimum`, `np.greater`, `np.less` - **Logical**: `np.logical_and`, `np.logical_or`, `np.logical_not` For more such Ufunc, address to [Universal functions (ufunc) — NumPy](https://numpy.org/doc/stable/reference/ufuncs.html)