## Regular Expressions in Python Regular expressions (regex) are a powerful tool for pattern matching and text manipulation. Python's re module provides comprehensive support for regular expressions, enabling efficient text processing and validation. Regular expressions (regex) are a versitile tool for matching patterns in strings. In Python, the `re` module provides support for working with regular expressions. ## 1. Introduction to Regular Expressions A regular expression is a sequence of characters defining a search pattern. Common use cases include validating input, searching within text, and extracting specific patterns. ## 2. Basic Syntax Literal Characters: Match exact characters (e.g., abc matches "abc"). Metacharacters: Special characters like ., *, ?, +, ^, $, [ ], and | used to build patterns. **Common Metacharacters:** * .: Any character except newline. * ^: Start of the string. * $: End of the string. * *: 0 or more repetitions. * +: 1 or more repetitions. * ?: 0 or 1 repetition. * []: Any one character inside brackets (e.g., [a-z]). * |: Either the pattern before or after. * \ : Used to drop the special meaning of character following it * {} : Indicate the number of occurrences of a preceding regex to match. * () : Enclose a group of Regex Examples: ```bash 1. `.` import re pattern = r'c.t' text = 'cat cot cut cit' matches = re.findall(pattern, text) print(matches) # Output: ['cat', 'cot', 'cut', 'cit'] 2. `^` pattern = r'^Hello' text = 'Hello, world!' match = re.search(pattern, text) print(match.group() if match else 'No match') # Output: 'Hello' 3. `$` pattern = r'world!$' text = 'Hello, world!' match = re.search(pattern, text) print(match.group() if match else 'No match') # Output: 'world!' 4. `*` pattern = r'ab*' text = 'a ab abb abbb' matches = re.findall(pattern, text) print(matches) # Output: ['a', 'ab', 'abb', 'abbb'] 5. `+` pattern = r'ab+' text = 'a ab abb abbb' matches = re.findall(pattern, text) print(matches) # Output: ['ab', 'abb', 'abbb'] 6. `?` pattern = r'ab?' text = 'a ab abb abbb' matches = re.findall(pattern, text) print(matches) # Output: ['a', 'ab', 'ab', 'ab'] 7. `[]` pattern = r'[aeiou]' text = 'hello world' matches = re.findall(pattern, text) print(matches) # Output: ['e', 'o', 'o'] 8. `|` pattern = r'cat|dog' text = 'I have a cat and a dog.' matches = re.findall(pattern, text) print(matches) # Output: ['cat', 'dog'] 9. `\`` pattern = r'\$100' text = 'The price is $100.' match = re.search(pattern, text) print(match.group() if match else 'No match') # Output: '$100' 10. `{}` pattern = r'\d{3}' text = 'My number is 123456' matches = re.findall(pattern, text) print(matches) # Output: ['123', '456'] 11. `()` pattern = r'(cat|dog)' text = 'I have a cat and a dog.' matches = re.findall(pattern, text) print(matches) # Output: ['cat', 'dog'] ``` ## 3. Using the re Module **Key functions in the re module:** * re.match(): Checks for a match at the beginning of the string. * re.search(): Searches for a match anywhere in the string. * re.findall(): Returns a list of all matches. * re.sub(): Replaces matches with a specified string. * re.split(): Returns a list where the string has been split at each match. * re.escape(): Escapes special character Examples: ```bash import re # Match at the beginning print(re.match(r'\d+', '123abc').group()) # Output: 123 # Search anywhere print(re.search(r'\d+', 'abc123').group()) # Output: 123 # Find all matches print(re.findall(r'\d+', 'abc123def456')) # Output: ['123', '456'] # Substitute matches print(re.sub(r'\d+', '#', 'abc123def456')) # Output: abc#def# #Return a list where it get matched print(re.split("\s", txt)) #['The', 'Donkey', 'in', 'the','Town'] # Escape special character print(re.escape("We are good to go")) #We\ are\ good\ to\ go ``` ## 4. Compiling Regular Expressions Compiling regular expressions improves performance for repeated use. Example: ```bash import re pattern = re.compile(r'\d+') print(pattern.match('123abc').group()) # Output: 123 print(pattern.search('abc123').group()) # Output: 123 print(pattern.findall('abc123def456')) # Output: ['123', '456'] ``` ## 5. Groups and Capturing Parentheses () group and capture parts of the match. Example: ```bash import re match = re.match(r'(\d{3})-(\d{2})-(\d{4})', '123-45-6789') if match: print(match.group()) # Output: 123-45-6789 print(match.group(1)) # Output: 123 print(match.group(2)) # Output: 45 print(match.group(3)) # Output: 6789 ``` ## 6. Special Sequences Special sequences are shortcuts for common patterns: * \A:Returns a match if the specified characters are at the beginning of the string. * \b:Returns a match where the specified characters are at the beginning or at the end of a word. * \B:Returns a match where the specified characters are present, but NOT at the beginning (or at the end) of a word. * \d: Any digit. * \D: Any non-digit. * \w: Any alphanumeric character. * \W: Any non-alphanumeric character. * \s: Any whitespace character. * \S: Any non-whitespace character. * \Z:Returns a match if the specified characters are at the end of the string. Example: ```bash import re print(re.search(r'\w+@\w+\.\w+', 'Contact: support@example.com').group()) # Output: support@example.com ``` ## 7.Sets A set is a set of characters inside a pair of square brackets [] with a special meaning: * [arn] : Returns a match where one of the specified characters (a, r, or n) is present. * [a-n] : Returns a match for any lower case character, alphabetically between a and n. * [^arn] : Returns a match for any character EXCEPT a, r, and n. * [0123] : Returns a match where any of the specified digits (0, 1, 2, or 3) are present. * [0-9] : Returns a match for any digit between 0 and 9. * [0-5][0-9] : Returns a match for any two-digit numbers from 00 and 59. * [a-zA-Z] : Returns a match for any character alphabetically between a and z, lower case OR upper case. * [+] : In sets, +, *, ., |, (), $,{} has no special meaning, so [+] means: return a match for any + character in the string. ## Summary Regular expressions (regex) are a powerful tool for text processing in Python, offering a flexible way to match, search, and manipulate text patterns. The re module provides a comprehensive set of functions and metacharacters to tackle complex text processing tasks. With regex, you can: 1.Match patterns: Use metacharacters like ., *, ?, and {} to match specific patterns in text. 2.Search text: Employ functions like re.search() and re.match() to find occurrences of patterns in text. 3.Manipulate text: Utilize functions like re.sub() to replace patterns with new text.