kopia lustrzana https://github.com/animator/learn-python
Minor Changes in mathematical equation
rodzic
69257a5910
commit
ff4f5f9c4c
|
@ -116,13 +116,13 @@ Q-Learning is a model-free algorithm used in reinforcement learning to learn the
|
|||
- Choose an action using an exploration strategy (e.g., epsilon-greedy).
|
||||
- Take the action, observe the reward and the next state.
|
||||
- Update the Q-value of the current state-action pair using the Bellman equation:
|
||||
<img src="https://latex.codecogs.com/svg.latex?Q(s,&space;a)&space;\leftarrow&space;Q(s,&space;a)&space;+&space;\alpha&space;\left(&space;r&space;+&space;\gamma&space;\max_{a'}&space;Q(s',&space;a')&space;-&space;Q(s,&space;a)&space;\right)" title="Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)" />
|
||||
<img src="https://latex.codecogs.com/svg.latex?Q(s,&space;a)&space;\leftarrow&space;Q(s,&space;a)&space;+&space;\alpha&space;\left(&space;r&space;+&space;\gamma&space;\max_{a'}&space;Q(s',&space;a')&space;-&space;Q(s,&space;a)&space;\right)" title="Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)" />
|
||||
where:
|
||||
- \( Q(s, a) \) is the Q-value of state \( s \) and action \( a \).
|
||||
- \( r \) is the observed reward.
|
||||
- \( s' \) is the next state.
|
||||
- \( \alpha \) is the learning rate.
|
||||
- \( \gamma \) is the discount factor.
|
||||
- <img src="https://latex.codecogs.com/svg.latex?Q(s,&space;a)" title="Q(s, a)" /> is the Q-value of state <img src="https://latex.codecogs.com/svg.latex?s" title="s" /> and action<img src="https://latex.codecogs.com/svg.latex?a" title="a" />.
|
||||
- <img src="https://latex.codecogs.com/svg.latex?r" title="r" /> is the observed reward.
|
||||
- <img src="https://latex.codecogs.com/svg.latex?s'" title="s'" /> is the next state.
|
||||
- <img src="https://latex.codecogs.com/svg.latex?\alpha" title="\alpha" /> is the learning rate.
|
||||
- <img src="https://latex.codecogs.com/svg.latex?\gamma" title="\gamma" /> is the discount factor.
|
||||
3. Until convergence or a maximum number of episodes.
|
||||
|
||||
### Deep Q-Networks (DQN)
|
||||
|
@ -132,9 +132,9 @@ Deep Q-Networks (DQN) extend Q-learning to high-dimensional state spaces using d
|
|||
1. Initialize the Q-network with random weights.
|
||||
2. Initialize a target network with the same weights as the Q-network.
|
||||
3. Repeat for each episode:
|
||||
- Initialize the environment state \( s \).
|
||||
- Initialize the environment state <img src="https://latex.codecogs.com/svg.latex?s" title="s" />.
|
||||
- Repeat for each timestep:
|
||||
- With probability \( \epsilon \), choose a random action. Otherwise, select the action with the highest Q-value according to the Q-network.
|
||||
- With probability <img src="https://latex.codecogs.com/svg.latex?epsilon" title="\epsilon" />, choose a random action. Otherwise, select the action with the highest Q-value according to the Q-network.
|
||||
- Take the chosen action, observe the reward \( r \) and the next state \( s' \).
|
||||
- Store the transition \( (s, a, r, s') \) in the replay memory.
|
||||
- Sample a minibatch of transitions from the replay memory.
|
||||
|
|
Ładowanie…
Reference in New Issue