kopia lustrzana https://github.com/animator/learn-python
Add files via upload
rodzic
1b654fd3ab
commit
f4b24fdfd8
|
@ -0,0 +1,103 @@
|
|||
# Importing_and_Exporting_Data_in_Pandas
|
||||
|
||||
>Created by Krishna Kaushik
|
||||
|
||||
- **Now we're able to create `Series` and `DataFrames` in pandas, but we usually do not do this , in practice we import the data which is in the form of .csv (Comma Seperated Values) , a spreadsheet file or something similar.**
|
||||
|
||||
- *Good news is that pandas allows for easy importing of data like this through functions such as ``pd.read_csv()`` and ``pd.read_excel()`` for Microsoft Excel files.*
|
||||
|
||||
## 1. Importing from a Google sheet to a pandas dataframe
|
||||
|
||||
*Let's say that you wanted to get the information from Google Sheet document into a pandas DataFrame.*.
|
||||
|
||||
*You could export it as a .csv file and then import it using ``pd.read_csv()``.*
|
||||
|
||||
*In this case, the exported .csv file is called `Titanic.csv`*
|
||||
|
||||
|
||||
```python
|
||||
## Importing Titanic Data set
|
||||
import pandas as pd
|
||||
|
||||
titanic_df= pd.read_csv("https://raw.githubusercontent.com/kRiShNa-429407/learn-python/main/contrib/pandas/Datasets/Titanic.csv")
|
||||
print(titanic_df)
|
||||
```
|
||||
|
||||
pclass survived name \
|
||||
0 1 1 Allen, Miss. Elisabeth Walton
|
||||
1 1 1 Allison, Master. Hudson Trevor
|
||||
2 1 0 Allison, Miss. Helen Loraine
|
||||
3 1 0 Allison, Mr. Hudson Joshua Creighton
|
||||
4 1 0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels)
|
||||
... ... ... ...
|
||||
1304 3 0 Zabour, Miss. Hileni
|
||||
1305 3 0 Zabour, Miss. Thamine
|
||||
1306 3 0 Zakarian, Mr. Mapriededer
|
||||
1307 3 0 Zakarian, Mr. Ortin
|
||||
1308 3 0 Zimmerman, Mr. Leo
|
||||
|
||||
sex age sibsp parch ticket fare cabin embarked boat \
|
||||
0 female 29.00 0 0 24160 211.3375 B5 S 2
|
||||
1 male 0.92 1 2 113781 151.5500 C22 C26 S 11
|
||||
2 female 2.00 1 2 113781 151.5500 C22 C26 S NaN
|
||||
3 male 30.00 1 2 113781 151.5500 C22 C26 S NaN
|
||||
4 female 25.00 1 2 113781 151.5500 C22 C26 S NaN
|
||||
... ... ... ... ... ... ... ... ... ...
|
||||
1304 female 14.50 1 0 2665 14.4542 NaN C NaN
|
||||
1305 female NaN 1 0 2665 14.4542 NaN C NaN
|
||||
1306 male 26.50 0 0 2656 7.2250 NaN C NaN
|
||||
1307 male 27.00 0 0 2670 7.2250 NaN C NaN
|
||||
1308 male 29.00 0 0 315082 7.8750 NaN S NaN
|
||||
|
||||
body home.dest
|
||||
0 NaN St Louis, MO
|
||||
1 NaN Montreal, PQ / Chesterville, ON
|
||||
2 NaN Montreal, PQ / Chesterville, ON
|
||||
3 135.0 Montreal, PQ / Chesterville, ON
|
||||
4 NaN Montreal, PQ / Chesterville, ON
|
||||
... ... ...
|
||||
1304 328.0 NaN
|
||||
1305 NaN NaN
|
||||
1306 304.0 NaN
|
||||
1307 NaN NaN
|
||||
1308 NaN NaN
|
||||
|
||||
[1309 rows x 14 columns]
|
||||
|
||||
|
||||
The dataset I am using here for your reference is taken from the same repository i.e ``learn-python`` (https://raw.githubusercontent.com/kRiShNa-429407/learn-python/main/contrib/pandas/Datasets/Titanic.csv) I uploaded it in the Datasets folder,you can use it from there.
|
||||
|
||||
You can also place the filename with its path in `pd.read_csv()`.
|
||||
|
||||
**Now we've got the same data from the Google Spreadsheet , but now available as ``pandas DataFrame`` which means we can now apply all pandas functionality over it.**
|
||||
|
||||
#### Note: The quiet important thing i am telling is that ``pd.read_csv()`` takes the location of the file (which is in your current working directory) or the hyperlink of the dataset from the other source.
|
||||
|
||||
#### But if you want to import the data from Github you can't directly use its link , you have to first convert it to raw by clicking on the raw button present in the repo .
|
||||
|
||||
#### Also you can't use the data directly from `Kaggle` you have to use ``kaggle API``
|
||||
|
||||
## 2. The Anatomy of DataFrame
|
||||
|
||||
**Different functions use different labels for different things, and can get a little confusing.**
|
||||
|
||||
- Rows are refer as ``axis=0``
|
||||
- columns are refer as ``axis=1``
|
||||
|
||||
## 3. Exporting Data
|
||||
|
||||
**OK, so after you've made a few changes to your data, you might want to export it and save it so someone else can access the changes.**
|
||||
|
||||
**pandas allows you to export ``DataFrame's`` to ``.csv`` format using ``.to_csv()``, or to a spreadsheet format using .to_excel().**
|
||||
|
||||
### Exporting a dataframe to a CSV
|
||||
|
||||
**We haven't made any changes yet to the ``titanic_df`` DataFrame but let's try to export it.**
|
||||
|
||||
|
||||
```python
|
||||
#Export the titanic_df DataFrame to csv
|
||||
titanic_df.to_csv("exported_titanic.csv")
|
||||
```
|
||||
|
||||
Running this will save a file called ``exported_titanic.csv`` to the current folder.
|
Ładowanie…
Reference in New Issue