kopia lustrzana https://github.com/animator/learn-python
update PCA
rodzic
d88184f0bd
commit
f2be7b8dda
|
@ -88,3 +88,8 @@ print("Transformed Data:\n", X_pca)
|
|||
#### Conclusion
|
||||
Principal Component Analysis (PCA) is a powerful tool for reducing the dimensionality of datasets while preserving as much variance as possible. It is especially useful in exploratory data analysis and preprocessing for other machine learning algorithms.
|
||||
|
||||
#### References
|
||||
- Jolliffe, I. T. (2002). *Principal Component Analysis*. Springer Series in Statistics.
|
||||
- [PCA Explained](https://towardsdatascience.com/a-step-by-step-explanation-of-principal-component-analysis-118e7d7c15e8)
|
||||
- [Scikit-Learn PCA Documentation](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)
|
||||
|
||||
|
|
Ładowanie…
Reference in New Issue