kopia lustrzana https://github.com/animator/learn-python
Update statistical-operations-on-arrays.md
rodzic
f8699a52a7
commit
dc08f67d56
|
@ -1 +1,154 @@
|
|||
# Statistical Operations on Arrays
|
||||
|
||||
Statistics involves collecting data, analyzing it, and drawing conclusions from the gathered information.
|
||||
|
||||
NumPy provides powerful statistical functions to perform efficient data analysis on arrays, including `minimum`, `maximum`, `mean`, `median`, `variance`, `standard deviation`, and more.
|
||||
|
||||
## Minimum
|
||||
|
||||
In NumPy, the minimum value of an array is the smallest element present.
|
||||
|
||||
The smallest element of an array is calculated using the `np.min()` function.
|
||||
|
||||
**Code**
|
||||
```python
|
||||
import numpy as np
|
||||
array = np.array([100,20,300,400])
|
||||
#Calculating the minimum
|
||||
result = np.min(array)
|
||||
print("Minimum :", result)
|
||||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
Minimum : 20
|
||||
```
|
||||
|
||||
## Maximum
|
||||
|
||||
In NumPy, the maximum value of an array is the largest element present.
|
||||
|
||||
The largest element of an array is calculated using the `np.max()` function.
|
||||
|
||||
**Code**
|
||||
```python
|
||||
import numpy as np
|
||||
array = np.array([100,20,300,400])
|
||||
#Calculating the maximum
|
||||
result = np.max(array)
|
||||
print("Maximum :", result)
|
||||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
Maximum : 400
|
||||
```
|
||||
|
||||
## Mean
|
||||
|
||||
The mean value of a NumPy array is the average of all its elements.
|
||||
|
||||
It is calculated by summing all the elements and then dividing by the total number of elements.
|
||||
|
||||
The mean of an array is calculated using the `np.mean()` function.
|
||||
|
||||
**Code**
|
||||
```python
|
||||
import numpy as np
|
||||
array = np.array([10,20,30,40])
|
||||
#Calculating the mean
|
||||
result = np.mean(array)
|
||||
print("Mean :", result)
|
||||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
Mean : 25.0
|
||||
```
|
||||
|
||||
## Median
|
||||
|
||||
The median value of a NumPy array is the middle value in a sorted array.
|
||||
|
||||
It separates the higher half of the data from the lower half.
|
||||
|
||||
The median of an array is calculated using the `np.median()` function.
|
||||
|
||||
It is important to note that:
|
||||
|
||||
- If the number of elements is `odd`, the median is the middle element.
|
||||
- If the number of elements is `even`, the median is the average of the two middle elements.
|
||||
|
||||
**Code**
|
||||
```python
|
||||
import numpy as np
|
||||
#The number of elements is odd
|
||||
array = np.array([5,6,7,8,9])
|
||||
#Calculating the median
|
||||
result = np.median(array)
|
||||
print("Median :", result)
|
||||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
Median : 7.0
|
||||
```
|
||||
|
||||
**Code**
|
||||
```python
|
||||
import numpy as np
|
||||
#The number of elements is even
|
||||
array = np.array([1,2,3,4,5,6])
|
||||
#Calculating the median
|
||||
result = np.median(array)
|
||||
print("Median :", result)
|
||||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
Median : 3.5
|
||||
```
|
||||
|
||||
## Variance
|
||||
|
||||
Variance in a NumPy array measures the spread or dispersion of data points.
|
||||
|
||||
Calculated as the average of the squared differences from the mean.
|
||||
|
||||
The variance of an array is calculated using the `np.var()` function.
|
||||
|
||||
**Code**
|
||||
```python
|
||||
import numpy as np
|
||||
array = np.array([10,70,80,50,30])
|
||||
#Calculating the variance
|
||||
result = np.var(array)
|
||||
print("Variance :", result)
|
||||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
Variance : 656.0
|
||||
```
|
||||
|
||||
## Standard Deviation
|
||||
|
||||
The standard deviation of a NumPy array measures the amount of variation or dispersion of the elements in the array.
|
||||
|
||||
It is calculated as the square root of the average of the squared differences from the mean, providing insight into how spread out the values are around the mean.
|
||||
|
||||
The standard deviation of an array is calculated using the `np.std()` function.
|
||||
|
||||
**Code**
|
||||
```python
|
||||
import numpy as np
|
||||
array = np.array([25,30,40,55,75,100])
|
||||
#Calculating the standard deviation
|
||||
result = np.std(array)
|
||||
print("Standard Deviation :", result)
|
||||
```
|
||||
|
||||
**Output**
|
||||
```
|
||||
Standard Deviation : 26.365486699260625
|
||||
```
|
||||
|
|
Ładowanie…
Reference in New Issue