From d8ed2834bc0d7b5af2910c2f99ac38b253120770 Mon Sep 17 00:00:00 2001 From: manishrana Date: Thu, 27 Jun 2024 19:18:09 +0530 Subject: [PATCH] correlationtest --- .../CorrelationTests.ipynb | 1 + .../correlation_data.csv | 151 ++++++++++++++++++ .../requirement.txt | 4 + 3 files changed, 156 insertions(+) create mode 100644 contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/CorrelationTests.ipynb create mode 100644 contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/correlation_data.csv create mode 100644 contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/requirement.txt diff --git a/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/CorrelationTests.ipynb b/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/CorrelationTests.ipynb new file mode 100644 index 0000000..d612303 --- /dev/null +++ b/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/CorrelationTests.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyPxXRI0D/ORdehT2OqMcfRo"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":5,"metadata":{"id":"n3NFEqnnZVF5","executionInfo":{"status":"ok","timestamp":1719470240963,"user_tz":-330,"elapsed":4,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}}},"outputs":[],"source":["import pandas as pd\n","from scipy.stats import pearsonr, spearmanr\n","import matplotlib.pyplot as plt\n","import seaborn as sns"]},{"cell_type":"code","source":["from google.colab import drive\n","drive.mount('/content/drive')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"sgZMyNDZZoAa","executionInfo":{"status":"ok","timestamp":1719470245477,"user_tz":-330,"elapsed":3846,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"40bfbd1f-5f68-4ece-958e-4b3916b86833"},"execution_count":6,"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"]}]},{"cell_type":"code","source":["# Read the CSV file\n","data = pd.read_csv('/content/drive/MyDrive/GirlsScriptOpenSource/Mlrepo/CorrelationTests/correlation_data.csv')"],"metadata":{"id":"fAsQfTVaZX1o","executionInfo":{"status":"ok","timestamp":1719470245478,"user_tz":-330,"elapsed":24,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}}},"execution_count":7,"outputs":[]},{"cell_type":"code","source":["# Display the first few rows of the dataset to understand its structure\n","print(data.head())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"G44kaqypZloK","executionInfo":{"status":"ok","timestamp":1719470245479,"user_tz":-330,"elapsed":23,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"f5071b1b-19cb-4e72-c7e9-9041f0ff647a"},"execution_count":8,"outputs":[{"output_type":"stream","name":"stdout","text":[" x y\n","0 54.967142 139.922782\n","1 48.617357 125.007875\n","2 56.476885 134.391966\n","3 65.230299 165.398283\n","4 47.658466 122.076890\n"]}]},{"cell_type":"code","source":["# Perform Pearson Correlation Test\n","pearson_corr, pearson_p_value = pearsonr(data['x'], data['y'])\n","print(f\"Pearson Correlation Coefficient: {pearson_corr}\")\n","print(f\"p_value: {pearson_p_value}\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"XrsawYmuZX4e","executionInfo":{"status":"ok","timestamp":1719470277181,"user_tz":-330,"elapsed":799,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"4a39ee95-841c-40de-8c33-fbebaf2eced1"},"execution_count":13,"outputs":[{"output_type":"stream","name":"stdout","text":["Pearson Correlation Coefficient: 0.9159570424233306\n","p_value: 1.4564365672451303e-60\n"]}]},{"cell_type":"code","source":["# Interpret the results\n","alpha = 0.05\n","if pearson_p_value>= alpha:\n"," print(f\"Since p-value ({pearson_p_value:.4f}) >= alpha ({alpha}), we do not reject the null hypothesis.\")\n","else:\n"," print(f\"Since p-value ({pearson_p_value:.4f}) < alpha ({alpha}), we reject the null hypothesis.\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Zje7NOW7ZX7K","executionInfo":{"status":"ok","timestamp":1719470316292,"user_tz":-330,"elapsed":473,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"b6b64339-8e17-479c-a558-78584b6dfd6b"},"execution_count":15,"outputs":[{"output_type":"stream","name":"stdout","text":["Since p-value (0.0000) < alpha (0.05), we reject the null hypothesis.\n"]}]},{"cell_type":"code","source":["# Perform Spearman Correlation Test\n","spearman_corr, spearman_p_value = spearmanr(data['x'], data['y'])\n","print(f\"Spearman's Rank Correlation Coefficient: {spearman_corr}\")\n","print(f\"P-value: {spearman_p_value}\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"C-4Tnd2JZX-g","executionInfo":{"status":"ok","timestamp":1719470337372,"user_tz":-330,"elapsed":447,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"61e64a93-d45d-4b7f-9aad-685960d72cf5"},"execution_count":16,"outputs":[{"output_type":"stream","name":"stdout","text":["Spearman's Rank Correlation Coefficient: 0.9106235832703677\n","P-value: 1.1313575662489316e-58\n"]}]},{"cell_type":"code","source":["# Interpret the results\n","alpha = 0.05\n","if spearman_p_value>= alpha:\n"," print(f\"Since p-value ({spearman_p_value:.4f}) >= alpha ({alpha}), we do not reject the null hypothesis.\")\n","else:\n"," print(f\"Since p-value ({spearman_p_value:.4f}) < alpha ({alpha}), we reject the null hypothesis.\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"7FwrnaLgaykG","executionInfo":{"status":"ok","timestamp":1719470369981,"user_tz":-330,"elapsed":727,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"1525a4fa-90e5-467c-8b7f-cf5217114363"},"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["Since p-value (0.0000) < alpha (0.05), we reject the null hypothesis.\n"]}]},{"cell_type":"code","source":["# Plotting the data\n","plt.figure(figsize=(12, 6))\n","\n","# Scatter plot with regression line\n","sns.regplot(x='x', y='y', data=data)\n","plt.title('Scatter Plot with Regression Line')\n","plt.xlabel('X')\n","plt.ylabel('Y')\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":564},"id":"BNsWx_I6a6Wz","executionInfo":{"status":"ok","timestamp":1719470385281,"user_tz":-330,"elapsed":1800,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"2f3e91ac-d7d7-4667-bfa5-2d3785835c98"},"execution_count":18,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+0AAAIjCAYAAAB20vpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADD5klEQVR4nOzdeXxU9b0//tc5Z86ZfbIQQhISEIIIIiqyiFRE60Kp1Qootnaxaluvrba39tdFb2+rXbS92trt1i7f77V+20vritVatbZuKFp2RUQRXEhIQsg2k9nOnOXz+2OSIclMkkkyk0yS1/Px6ONxyUzmfGYSrrzP5/15vSUhhAARERERERERFRx5rBdARERERERERJmxaCciIiIiIiIqUCzaiYiIiIiIiAoUi3YiIiIiIiKiAsWinYiIiIiIiKhAsWgnIiIiIiIiKlAs2omIiIiIiIgKFIt2IiIiIiIiogLFop2IiIiIiIioQLFoJyIiyqH33nsPkiTh97///VgvpV+SJOGWW27J+rnXX399fhc0wT333HOQJAnPPffcWC8lo1tuuQWSJI31MoiIqB8s2omIKCt79uzBpZdeipkzZ8LlcmH69Ok4//zz8Ytf/CJv19y4cSN++tOfpn29oaEBt9xyC3bv3p23a/fVXXh1/09VVcyePRuf/vSn8c477+TkGlu2bMEtt9yCjo6OnLzeWF+3+wZG9/9kWUZpaSnWrFmDl19+OafXoszOPvtsnHTSSWO9DCIiGgEW7URENKgtW7ZgyZIlePXVV/G5z30Ov/zlL/HZz34WsizjZz/7Wd6uO1DRfuutt45q0d7tS1/6Ev7whz/gt7/9LS688ELcd999WLp0KRoaGkb82lu2bMGtt96a96I9FovhW9/61qhd9+Mf/zj+8Ic/4J577sF1112HV155Beeccw727NmTl+sVmrPOOguxWAxnnXXWWC8lo29961uIxWJjvQwiIuqHY6wXQEREhe8HP/gBioqKsG3bNhQXF/d6rLm5eWwWlQeRSARer3fA56xcuRKXXnopAOCqq67C3Llz8aUvfQn33nsvbrrpptFY5oi5XK5Rvd5pp52GT37yk6k/r1y5EmvWrMHdd9+NX/3qV6O6lmx+xrkmy/Kof+ZD4XA44HDwn4RERIWKO+1ERDSogwcPYsGCBWkFOwCUl5enfe2Pf/wjli1bBo/Hg5KSEpx11ln4+9//nnr8L3/5Cy688EJUVVXB6XSitrYW3/ve92BZVuo5Z599Nh5//HG8//77qfbq4447Ds899xyWLl0KIFk0dz/W8wz5v/71L3zoQx9CUVERPB4PVq1ahZdeeqnXGrvP8b7xxhu44oorUFJSgjPPPHPIn80HP/hBAMC777474POeeeYZrFy5El6vF8XFxfjoRz+Kffv29VrP1772NQDArFmzUu/rvffey/h6P//5z6EoSq/d8R//+MeQJAk33nhj6muWZcHv9+Mb3/hG6ms9z7Rne91HHnkEJ510EpxOJxYsWIAnn3xywPc7kJUrVwJI/l711NHRgX//939HTU0NnE4n5syZgx/96EewbbvX81pbW/GpT30KgUAAxcXFuPLKK/Hqq6+m/R585jOfgc/nw8GDB/HhD38Yfr8fn/jEJwAAtm3jpz/9KRYsWACXy4Vp06bh2muvRXt7e69rbd++HatXr0ZZWRncbjdmzZqFq6++utdz/vznP2Px4sXw+/0IBAJYuHBhrw6U/s60P/DAA1i8eDHcbjfKysrwyU9+EocPH+71nO73cPjwYVxyySXw+XyYOnUq/r//7//r9fdlJDKdae/OMsjm53748GFcffXVmDZtWup5//M//5OTtREREXfaiYgoCzNnzsTLL7+M119/fdDzsbfeeituueUWrFixAt/97nehaRr+9a9/4ZlnnsEFF1wAAPj9738Pn8+HG2+8ET6fD8888wy+/e1vIxQK4Y477gAA/Md//AeCwSDq6+tx1113AQB8Ph/mz5+P7373u/j2t7+Nz3/+86kCcMWKFQCSxfGaNWuwePFifOc734Esy7jnnnvwwQ9+EJs3b8ayZct6rfeyyy7D8ccfj9tuuw1CiCF/Nt2F55QpU/p9zj/+8Q+sWbMGs2fPxi233IJYLIZf/OIX+MAHPoCdO3fiuOOOw7p167B//3786U9/wl133YWysjIAwNSpUzO+5sqVK2HbNl588UV85CMfAQBs3rwZsixj8+bNqeft2rUL4XC439bsbK774osv4uGHH8YXvvAF+P1+/PznP8f69etx6NChAd93f7pvCJSUlKS+Fo1GsWrVKhw+fBjXXnstZsyYgS1btuCmm25CY2Nj6piEbdu46KKLsHXrVlx33XWYN28e/vKXv+DKK6/MeC3TNLF69WqceeaZuPPOO+HxeAAA1157LX7/+9/jqquuwpe+9CW8++67+OUvf4ldu3bhpZdegqqqaG5uxgUXXICpU6fim9/8JoqLi/Hee+/h4YcfTr3+008/jY9//OM499xz8aMf/QgAsG/fPrz00kv48pe/3O9n0H3tpUuX4vbbb8eRI0fws5/9DC+99BJ27drV6waZZVlYvXo1Tj/9dNx55534xz/+gR//+Meora3FddddN+TPP1vZ/NyPHDmC5cuXp4r8qVOn4oknnsA111yDUCiEf//3f8/b+oiIJg1BREQ0iL///e9CURShKIo444wzxNe//nXx1FNPiUQi0et5b7/9tpBlWaxdu1ZYltXrMdu2U/93NBpNu8a1114rPB6PiMfjqa9deOGFYubMmWnP3bZtmwAg7rnnnrRrHH/88WL16tVp15s1a5Y4//zzU1/7zne+IwCIj3/841l9Bs8++6wAIP7nf/5HHD16VDQ0NIjHH39cHHfccUKSJLFt2zYhhBDvvvtu2tpOPfVUUV5eLlpbW1Nfe/XVV4Usy+LTn/506mt33HGHACDefffdQddjWZYIBALi61//euq9T5kyRVx22WVCURTR2dkphBDiJz/5iZBlWbS3t6e+F4D4zne+k9V1AQhN08SBAwd6rR2A+MUvfjHgGrs/i1tvvVUcPXpUNDU1ic2bN4ulS5cKAOKBBx5IPfd73/ue8Hq9Yv/+/b1e45vf/KZQFEUcOnRICCHEQw89JACIn/70p70+iw9+8INpn/uVV14pAIhvfvObvV5z8+bNAoD43//9315ff/LJJ3t9fdOmTQJA6mebyZe//GURCASEaZr9Pqf7d+fZZ58VQgiRSCREeXm5OOmkk0QsFks9769//asAIL797W+nvYfvfve7vV5z0aJFYvHixf1es9uqVavEggULBnxO99+FnrL9uV9zzTWisrJStLS09Pr+j33sY6KoqCjj33UiIhoatscTEdGgzj//fLz88su4+OKL8eqrr+K//uu/sHr1akyfPh2PPvpo6nmPPPIIbNvGt7/9bchy7//E9Gy/dbvdqf+7s7MTLS0tWLlyJaLRKN58881hr3P37t14++23ccUVV6C1tRUtLS1oaWlBJBLBueeeixdeeCGt1frf/u3fhnSNq6++GlOnTkVVVRUuvPBCRCIR3HvvvViyZEnG5zc2NmL37t34zGc+g9LS0tTXTz75ZJx//vn429/+NvQ3iuQ56RUrVuCFF14AkNzdbW1txTe/+U0IIVLp7Js3b8ZJJ52U8WhDts477zzU1tb2WnsgEMg6Nf873/kOpk6dioqKCqxcuRL79u3Dj3/841Q2AJBsFV+5ciVKSkpSP7eWlhacd955sCwr9T6ffPJJqKqKz33uc70+iy9+8Yv9Xr/vbvQDDzyAoqIinH/++b2utXjxYvh8Pjz77LMAkPrM/vrXv8IwjIyvXVxcjEgkgqeffjqrzwJIttw3NzfjC1/4Qq+z7hdeeCHmzZuHxx9/PO17+v6erly5MmdTC/oz2M9dCIGHHnoIF110EYQQvT7L1atXIxgMYufOnXldIxHRZMD2eCIiysrSpUvx8MMPI5FI4NVXX8WmTZtw11134dJLL8Xu3btx4okn4uDBg5BlGSeeeOKAr7V3715861vfwjPPPINQKNTrsWAwOOw1vv322wDQb6t09+v3bMueNWvWkK7x7W9/GytXroSiKCgrK8P8+fMHDPF6//33AQAnnHBC2mPz58/HU089NexwtJUrV6ba7Tdv3ozKykqcdtppOOWUU7B582acf/75ePHFF7Fhw4Yhv3ZPM2bMSPtaSUlJ2vnv/nz+85/HZZddhng8jmeeeQY///nP085jv/3223jttdf6PQ7QHXj4/vvvo7KyMtXm3m3OnDkZv8/hcKC6ujrtWsFgMGMeQ89rrVq1CuvXr8ett96Ku+66C2effTYuueQSXHHFFXA6nQCAL3zhC7j//vuxZs0aTJ8+HRdccAE2bNiAD33oQ/1+HgP9TsybNw8vvvhir6+5XK60z2Uon/9wDfZzP3r0KDo6OvDb3/4Wv/3tbzO+xkQKqiQiGiss2omIaEg0TcPSpUuxdOlSzJ07F1dddRUeeOABfOc738nq+zs6OrBq1SoEAgF897vfRW1tLVwuF3bu3IlvfOMbaTvhQ9H9vXfccQdOPfXUjM/x+Xy9/txz1z8bCxcuxHnnnTes9eXamWeeCcMw8PLLL2Pz5s2p8/0rV67E5s2b8eabb+Lo0aOprw+XoigZvy6yzAA4/vjjU5/ZRz7yESiKgm9+85s455xzUh0Ktm3j/PPPx9e//vWMrzF37txhrBxwOp1pXR+2baO8vBz/+7//m/F7ugtkSZLw4IMP4pVXXsFjjz2Gp556CldffTV+/OMf45VXXoHP50N5eTl2796Np556Ck888QSeeOIJ3HPPPfj0pz+Ne++9d1hr7qu/zz/fBvu5d/99++QnP9nvjbKTTz45P4sjIppEWLQTEdGwdRdcjY2NAIDa2lrYto033nij36L5ueeeQ2trKx5++OFe4WiZ0tf7JloP9vXuVt5AIFAwhfXMmTMBAG+99VbaY2+++SbKyspSu+z9va/+LFu2DJqmYfPmzdi8eXMqBf6ss87C7373O/zzn/9M/XkgQ73uSP3Hf/wHfve73+Fb3/pWKo28trYW4XB40J/bzJkz8eyzzyIajfbabT9w4EDW16+trcU//vEPfOADH8jqps3y5cuxfPly/OAHP8DGjRvxiU98An/+85/x2c9+FkDyRtZFF12Eiy66CLZt4wtf+AJ+85vf4D//8z8zdgD0/J3onj7Q7a233ko9XuimTp0Kv98Py7IK5u8bEdFExDPtREQ0qGeffTbjrmr3eezuNt9LLrkEsizju9/9btqOeff3d+/e9Xy9RCKRcV631+vN2C7fXeT2HHcGAIsXL0ZtbS3uvPNOhMPhtO87evRov+8xXyorK3Hqqafi3nvv7bXe119/HX//+9/x4Q9/OPW1/t5Xf1wuF5YuXYo//elPOHToUK+d9lgshp///Oeora1FZWXlgK8z1OuOVHFxMa699lo89dRT2L17NwBgw4YNePnll/HUU0+lPb+jowOmaQIAVq9eDcMw8Lvf/S71uG3b+O///u+sr79hwwZYloXvfe97aY+Zppn6HNrb29N+77tvRum6DiA5fq4nWZZTu8vdz+lryZIlKC8vx69//etez3niiSewb98+XHjhhVm/l7GkKArWr1+Phx56CK+//nra42Px942IaCLiTjsREQ3qhhtuQDQaxdq1azFv3jwkEgls2bIF9913H4477jhcddVVAJLniv/jP/4D3/ve97By5UqsW7cOTqcT27ZtQ1VVFW6//XasWLECJSUluPLKK/GlL30JkiThD3/4Q8abAosXL8Z9992HG2+8EUuXLoXP58NFF12E2tpaFBcX49e//jX8fj+8Xi9OP/10zJo1C//n//wfrFmzBgsWLMBVV12F6dOn4/Dhw3j22WcRCATw2GOPjfbHhzvuuANr1qzBGWecgWuuuSY18q2oqCg1L737/QLJneiPfexjUFUVF1100YDn3VeuXIkf/vCHKCoqwsKFCwEA5eXlOOGEE/DWW2/hM5/5zKDrG851R+rLX/4yfvrTn+KHP/wh/vznP+NrX/saHn30UXzkIx/BZz7zGSxevBiRSAR79uzBgw8+iPfeew9lZWW45JJLsGzZMnz1q1/FgQMHMG/ePDz66KNoa2sDkF3XwKpVq3Dttdfi9ttvx+7du3HBBRdAVVW8/fbbeOCBB/Czn/0Ml156Ke6991786le/wtq1a1FbW4vOzk787ne/QyAQSN1s+exnP4u2tjZ88IMfRHV1Nd5//3384he/wKmnnor58+dnvL6qqvjRj36Eq666CqtWrcLHP/7x1Mi34447Dl/5yldy90EjWTx///vfT/v6rFmzUnPrh+uHP/whnn32WZx++un43Oc+hxNPPBFtbW3YuXMn/vGPf6R+LkRENAJjFVtPRETjxxNPPCGuvvpqMW/ePOHz+YSmaWLOnDnihhtuEEeOHEl7/v/8z/+IRYsWCafTKUpKSsSqVavE008/nXr8pZdeEsuXLxdut1tUVVWlRsihx1gsIYQIh8PiiiuuEMXFxQJAr/Fvf/nLX8SJJ54oHA5H2qivXbt2iXXr1okpU6YIp9MpZs6cKTZs2CD++c9/pp7TPebq6NGjWX0G3WO7eo4pyyTTyDchhPjHP/4hPvCBDwi32y0CgYC46KKLxBtvvJH2/d/73vfE9OnThSzLWY1/e/zxxwUAsWbNml5f/+xnPysAiP/7f/9v2vegz8i3ga4LQHzxi19Me42ZM2eKK6+8csC1dX8Wd9xxR8bHP/OZzwhFUVJjxTo7O8VNN90k5syZIzRNE2VlZWLFihXizjvv7DVe8OjRo+KKK64Qfr9fFBUVic985jPipZdeEgDEn//859TzrrzySuH1evtd329/+1uxePFi4Xa7hd/vFwsXLhRf//rXRUNDgxBCiJ07d4qPf/zjYsaMGcLpdIry8nLxkY98RGzfvj31Gg8++KC44IILRHl5udA0TcyYMUNce+21orGxMfWcviPfut13332pvyelpaXiE5/4hKivr+/1nP7eQ6YxbZmsWrVKAMj4v3PPPbff1xrKz/3IkSPii1/8oqipqRGqqoqKigpx7rnnit/+9reDro+IiAYnCZFligwRERFRgXrkkUewdu1avPjii/jABz4w1sshIiLKGRbtRERENK7EYrFeAXKWZeGCCy7A9u3b0dTUNOSJAERERIWMZ9qJiIhoXLnhhhsQi8VwxhlnQNd1PPzww9iyZQtuu+02FuxERDThcKediIiIxpWNGzfixz/+MQ4cOIB4PI45c+bguuuuw/XXXz/WSyMiIso5Fu1EREREREREBYpz2omIiIiIiIgKFIt2IiIiIiIiogLFIDoAtm2joaEBfr8fkiSN9XKIiIiIiIhoghNCoLOzE1VVVZDl/vfTWbQDaGhoQE1NzVgvg4iIiIiIiCaZuro6VFdX9/s4i3YAfr8fQPLDCgQCY7waIiIiIiIimuhCoRBqampS9Wh/WLQDqZb4QCDAop2IiIiIiIhGzWBHtBlER0RERERERFSgWLQTERERERERFSgW7UREREREREQFikU7ERERERERUYFi0U5ERERERERUoFi0ExERERERERUoFu1EREREREREBYpFOxEREREREVGBYtFOREREREREVKBYtBMREREREREVKBbtRERERERERAWKRTsRERERERFRgWLRTkRERERERFSgWLQTERERERERFSgW7UREREREREQFikU7ERERERERUYFi0U5ERERERERUoFi0ExERERER0YRh2WKsl5BTLNqJiIiIiIho3IsmTBzuiCEUM8Z6KTnlGOsFEBEREREREQ1XNGGiPWpANywAgEdVxnhFucWinYiIiIiIiMadvsX6RMWinYiIiIiIiMaNyVKsd2PRTkRERERERAUvoptojyaQMO2xXsqoYtFOREREREREBWuyFuvdWLQTERERERFRwZnsxXo3Fu1ERERERERUMMK6iQ4W6yks2omIiIhoUrFtgb0NIbRFEyj1aFhQFYAsS2O9LKJJj8V6ZizaiYiIiGjS2HKgBXc/fxAHm8MwLAFVkVBb7sN1q2qxYk7ZWC+PaFLqjBvoiBowLBbrmchjvQAiIiIiotGw5UALbt60B/saQ/A6HSj3O+F1OrCvsRM3b9qDLQdaxnqJRJOGEAKhuIG6tiiOduos2AfAop2IiIiIJjzbFrj7+YMI6yYqAi64VAWyLMGlKqgIOBHWLdz9/EHYthjrpRJNaEIIBGMG6ttjaGGxnhUW7UREREQ04e1tCOFgcxglHg2S1Pv8uiRJKPaoONgcxt6G0BitkGhiE0IgGDVQ1xZDa5jF+lDwTDsRERERTXht0QQMS0BTMu9ZORUZQVugLZoY5ZURTWy2nWyDD8YMWOxkGRYW7UREREQ04ZV6NKiKhIRlwyUraY/rlg1VllDq0cZgdUQTj2ULhGIGQvGxKdZNy4ajn5t0483EeBdERERERANYUBVAbbkP7VEDQvQuIIQQ6IgaqC33YUFVYIxWSDQxWLZAWySBurYo2qOJUS3YbSGw5WALrrl3G25/4s1Ru26+caediIiIiCY8WZZw3apa3LxpD5pCOoo9KpyKDN2y0RE14HMquG5VLee1Ew2TadkIxgyE4mbajbF8S5g2nn7jCB7YUY9DbVEAwFtNnfjSucejyK2O6lrygUU7EREREU0KK+aU4ba1C1Nz2oO2gCpLmF/p55x2yhnbFtjbEEJbNIFSj4YFVYEJfTPI6LrxFdZHv1gPxgw89moDNu06jPao0euxSMLC3/c24bIlNaO6pnxg0U5EREREk8aKOWVYPnvKpCqqaPRsOdCSuilkWAKqIqG23DchbwolTBsdsQQiujXqxXpDRwwP7qjHk683IW72TqGXAJxzQjm++MFaLJ5ZOqrryhdJjPYnXIBCoRCKiooQDAYRCPAcExERERERDc2WAy24edMehHUTJR4NmiIjYdlo7zp+cdvaheOqcO+vY0A3LQS7dtZH25tNIdy3rR6b3z6KvkflNYeM1Qum4bLF1Vg4vRgl3sIPlcy2DuVOOxERERER0QjYtsDdzx9EWDdREXBBkpKdGy5ZQUVARlNIx93PH8Ty2VPGRVdHpo6BWWVeXLFsBuaPclijLQReeacV92+vx2v1wbTHi9wqLjm1Ch89tQrFE3T6A4t2IiIiIiKiEdjbEMLB5jBKPFqqYO8mSRKKPSoONoextyGEhdVFY7TK7PTtGHDIEuKGhTcaQ7jtiX248fy5WDSjJO/ryBQu19P0YjcuW1KN1SdOg1NNH+M4kbBoJyIiIiIiGoG2aAKGJaD1MxfcqcgI2gJt0cQor2xoenYMlPucsERyhJuqyCjzaWgJJ7Bxax1OqSmGLOWnYyAYM/Doqw14JEO4HJAc37hhSQ1W1E6BMg66FnKBRTsREREREY2ZiZC2XurRoCoSEpYNl5y+66tbNlRZQmmBt2/vbQjh7SOd8DkdMPscGpcgwe9SUdcawYEjEcyt8OX02oOFy31gThk2LKnGSdMLu1MhH1i0ExERERHRmJgoaesLqgKoLfdhX2MnKgJyrxZ5IQQ6ogbmV/qxYJTPgw9FRDexv7kTumnD58xcJmqKhE4hEIznrmNgX2MI922vw4tvt2QMl/vQggpcung6qks8ObvmeMOinYiIiIiIRl1/aev7Gjtx86Y94yptXZYlXLeqFjdv2oOmkI5ijwqnIkPvmmHucyq4blVtQXYQdMYNdEQNGJYNr+qAKkswLAGnI32tCUtAlSQUuUbWMWALgZcPJsPl9hyenOFyQ8GinYiIiIiIRtVES1sHgBVzynDb2oWpzoGgLaDKEuZX+guuc0AIgU7dRLCrWO82Z5oXNVO8eOdoGGU+DRJ6dAxAoDNuYPZUH+ZM8w7rugnTxt/fOIIHttehrj2W9nh3uNwFJ06Da4KHyw0Fi3YiIiIiIhpVEyltvacVc8qwfPaUgj2jL4RAKJ4s1k3bTntcliRcsawGP3l6P1rCCfhdKjRFQsJKFuweTcEVy2qGHEKXTbjc5UtqcMYkCpcbChbtREREREQ0qiZK2nomsiwV3I0G2xbojJsIxjIX6z0tmlGCG8+fi41b61DXGkGnSLbEz57qwxXLaoY07q2hI4YHusLl9AzhcmceX4bLFk/OcLmhYNFORERERESjaqKkrRc62xYIxQ0EYwasvilvA1g0owSn1BTjwJEIgvEEilwa5kzzZr3Dnk243GWLqzG9xD2UtzNpsWgnIiIiIqJRNRHS1guZZQsEYwZCMQO2yL5Y70mWpCGNdRssXK7YreKSRVW4+BSGyw0Vi3YiIiIiIhpV4zltvZBZtkBHNIHOuDnsYn2oBguXqy5x47LFyXA5J8PlhoVFOxERERERjbrxlLZe6EzLRkfMQGfchBilYj0YM/Do7gY8sjtzuNxJVQFcvjQZLjfU4DrqbUyL9hdeeAF33HEHduzYgcbGRmzatAmXXHJJ6vFwOIxvfvObeOSRR9Da2opZs2bhS1/6Ev7t3/4t9Zx4PI6vfvWr+POf/wxd17F69Wr86le/wrRp08bgHRERERERUbYKPW290BldnQlhffSK9cMdMTw4SLjchiXVWFA1+uFysiTB53LA55pYe9Nj+m4ikQhOOeUUXH311Vi3bl3a4zfeeCOeeeYZ/PGPf8Rxxx2Hv//97/jCF76AqqoqXHzxxQCAr3zlK3j88cfxwAMPoKioCNdffz3WrVuHl156abTfDhERERERDVEhpq0XuoRpoyOaQFg3R+2aA4XLObvC5S4do3A5zSHD71Lhdzom5A0fSYzWLZlBSJKUttN+0kkn4fLLL8d//ud/pr62ePFirFmzBt///vcRDAYxdepUbNy4EZdeeikA4M0338T8+fPx8ssvY/ny5VldOxQKoaioCMFgEIEAwy6IiIiIiKjwxA0LwZiByCgV69mGy330lOko8qijsqZukiTBqykIuFW4xulZ+Wzr0ILuG1ixYgUeffRRXH311aiqqsJzzz2H/fv346677gIA7NixA4Zh4Lzzzkt9z7x58zBjxowBi3Zd16HreurPoVAov2+EiIiIiIhomOKGhfZoArGENSrXyyZcbsOSapw/f/TD5RyyDL/LAb/LAYcij+q1x0pBF+2/+MUv8PnPfx7V1dVwOByQZRm/+93vcNZZZwEAmpqaoGkaiouLe33ftGnT0NTU1O/r3n777bj11lvzuXQiIiIiIqIRiSWSxXrcGJ1iPRg18Oir/YfLLZwewIYlYxMu59YUBFwqPJrSa0TgZFDwRfsrr7yCRx99FDNnzsQLL7yAL37xi6iqquq1uz5UN910E2688cbUn0OhEGpqanKxZCIiIiIiohGJJky0Rw3oo1SsH+6I4cHt9Xhyb+ZwuZXHl2HDkhqcWDW6R4m7g+UCLhWaY3LsqmdSsEV7LBbDzTffjE2bNuHCCy8EAJx88snYvXs37rzzTpx33nmoqKhAIpFAR0dHr932I0eOoKKiot/XdjqdcDqd+X4LREREREREWYvoJtqjCST6FM758kZDCPdvr8Pmt1vQN+hsLMPlNIeMgFuFT5uYwXJDVbBFu2EYMAwDstz7joqiKLDt5C/x4sWLoaoq/vnPf2L9+vUAgLfeeguHDh3CGWecMeprJiIiIiIiGqqwbqJjlIr1Y+FyddhzOD3ba6zC5SZCsFy+jGnRHg6HceDAgdSf3333XezevRulpaWYMWMGVq1aha997Wtwu92YOXMmnn/+efy///f/8JOf/AQAUFRUhGuuuQY33ngjSktLEQgEcMMNN+CMM87IOjmeiIiIiIhoLHTGDXREDRhW/ot13bCS4XI76lHfT7jcZYurccGJoxsu55BlBNwO+F0qFO6qZzSmI9+ee+45nHPOOWlfv/LKK/H73/8eTU1NuOmmm/D3v/8dbW1tmDlzJj7/+c/jK1/5Sip8IB6P46tf/Sr+9Kc/Qdd1rF69Gr/61a8GbI/viyPfiIiIiIhoNAghunbWR6dYD0YN/OXVw3hkVwM6YunhcidVBXD50tEPl+sOlvM6C7b5O++yrUMLZk77WGLRTkRERERE+SSEQKduIjhKxfrh9hge3DFwuNxlS6qxoKoo72vpJktS17i2/AXL2bbA3oYQ2qIJlHo0LKgKFOy5+Akxp52IiIiIiGg8G+1i/Y2GEO7bXocXCyhcrjtYzu905HVc25YDLbj7+YM42ByGYQmoioTach+uW1WLFXPK8nbdfGPRTkRERERElGNCCITiyWLdtPNbrHeHy923rQ6vNxRGuJwkSfA6ky3woxEst+VAC27etAdh3USJR4OmyEhYNvY1duLmTXtw29qF47ZwZ9FORERERESUI6NZrOuGhaf3HcH92/sPl9uwpBrnzx+9cDlVkVMt8KMVLGfbAnc/fxBh3URFwJXazXfJCioCMppCOu5+/iCWz55SsK3yA2HRTkRERERENEJCCIRiJoKx/Bfrg4XLLZwewIYloxsu59EcCLgd8GijX2LubQjhYHMYJR4trf1ekiQUe1QcbA5jb0MIC6tH7wx/rrBoJyIiIiIiGqbRLNazCZfbsKQGJ1aNTri2IkvwOR0IuFWoSn6C5bLRFk3AsAS0ftbgVGQEbYG2aGKUV5YbLNqJiIiIiIiGyLYFOuMmOmIJWHZ+B3JlFS63pBrTi0cnXM6pKgi4HPDlOVguW6UeDaoiIWHZcMnpxwB0y4YqSyj1aGOwupFj0U5ERERERJQl2xYIxQ0EY0Zei/VswuXWLpqOi0+tQpE7/+Fyox0sNxQLqgKoLfdhX2MnKgJyrxsJQgh0RA3Mr/RjwSh1IOQai3YiIiIiIqJBjFaxrhsW/v7GETywI3O4XE2JG5ctqcH588tHJVxOVWQEXCp8LseoBcsNlSxLuG5VLW7etAdNIR3FHhVORYZu2eiIGvA5FVy3qnZchtABLNqJiIiIiIj6ZdsCwZiBUDy/xXowauCR3YfxyO4GBDOGyxVhw5LqUQuXG8tgueFYMacMt61dmJrTHrQFVFnC/Eo/57QTERERERFNNJYtEIold9Ztkb9ivb49igd3HMZTGcLlZAk48/gyXL6kBvMr89/aXSjBcsO1Yk4Zls+egr0NIbRFEyj1aFhQFRi3O+zdWLQTERERERF1sbp31vNcrO9tCOL+7fX9hsutOakC6xePTric5pBR5FYLJlhuJGRZGpdj3QbCop2IiIiIiCY9yxboiCbQGTfzVqxbdle43PY67M0QLlfiUXHJoum4+JT8h8tJkgSvpiDgLrxgOeqNRTsREREREU1apmV3nVk3IfJUrOuGhafeOIIHBwmXu+DEadAc+W1Ld8gy/C4H/C4HHOOwBX4yYtFORERERESTjmnZ6IgZ6Mxjsd4RTeAvuxsKIlzOpSZ31b2aMu5b4CcbFu1ERERERAQgmZQ+0UK8+jK6xoCF9fwV693hck/ubUJiDMPlZEmC15lMgXc62AI/XrFoJyIiIiIibDnQkhqXZVgCqiKhttw37sdldUuYNjpiCUR0K2/F+t6GIO7bVo+XDqSHy7kcMj40SuFyqiIj4Fbhdzom3E2XyYhFOxERERHRJLflQAtu3rQHYd1EiUeDpshIWDb2NXbi5k17cNvaheO2cNdNC8GunfV8sGyBLQdbcX8BhMt5nQ4EXCrcGnfVJxIW7UREREREk5htC9z9/EGEdRMVAVfqvLNLVlARkNEU0nH38wexfPaUcbVrGzcsdEQNRBP5KdazCZfbsKQG5+c5XI7BchMfi3YiIiIioklsb0MIB5vDKPFoaQFlkiSh2KPiYHMYextC42L+ddyw0B5NIJaw8vL6g4XLnVydDJdbPju/4XIMlps8WLQTEREREU1ibdEEDEtA62eX1qnICNoCbdHEKK9saKIJEx1RA3EjP8V6fXsUD+yox1N7j2QMl1t5/FRsWFKd13A5BstNTizaiYiIiIgmsVKPBlWRkLBsuOT0QlC3bKiyhFKPNgarG1xEN9ERM6DnqVh//XAQ92/PHC7ndMhYMwrhcgyWm9xYtBMRERERTWILqgKoLfdhX2MnKgJyr1ZrIQQ6ogbmV/qxoCq/48mGKqyb6Igm0na9c6FQwuUYLEcAi3YiIiIioklNliVct6oWN2/ag6aQjmKPCqciQ++aZ+5zKrhuVW1B7PAKIbqKdQOGlftivRDC5RRZgt+lwu9yQGWwHIFFOxERERHRpLdiThluW7swNac9aAuosoT5lf6CmNMuhECnbiKYp2K9I5rAI7sb8JcxDJfTHMda4BksRz2xaCciIiIiIqyYU4bls6dgb0MIbdEESj0aFlQFxnSHXQiBUMxEMGbAtHNfrI91uJwkSfBqyRR4l8oWeMqMRTsREREREQFItsoXwlg32xYIxQ0EYwYsu2/828gNFC7ncshYs7AS60+bjqo8hctxtjoNBYt2IiIiIiIqCJYtEIoZCMVzX6x3h8vdt60ObzRmDpdbu2g6LspjuJxTVVDE2eo0RCzaiYiIiIhoTFm2QDBmIBQzYIvcFutxw8JTe5Phcoc70sPlZpR6sGFJNc6bn59wOUmS4HUmi3XOVqfhYNFORERERERjwrTsZLEeNyFyXKy3RxP4y64GPLL7MEJxM+3xk6uLcPmSGpw+uzQv4XIOWUbA7YDfpUIpgOR9Gr9YtBMRERERTRK2LQoiaM7oGicX1nNfrNe1RfHgjno89UbmcLmzjp+Ky/IYLufWFARcKrxOllqUG/xNIiIiIiKaBLYcaEmNdDMsAVWRUFvuG9WRboZloz2aQES3cl6sv344iPu212HLgdZ+w+UuXTwdlUW5D5eTJQk+lwMBl5q3+e00ebFoJyIiIiKa4LYcaMHNm/YgrJso8WjQFBkJy8a+xk7cvGkPblu7MK+Fe8K00RFNIKynt6mPhGULvHSwBfdvq+83XG7dadNx0clVCOQhXE5VZARcKvwux5iOxqOJjUU7EREREdEEZtsCdz9/EGHdREXAlUotd8kKKgIymkI67n7+IJbPnpLzwlM3LQS72uBzaazD5TyaAwG3Ax6N5RTlH3/LiIiIiIgmsL0NIRxsDqPEo6WNGZMkCcUeFQebw9jbEMrZjPa4YSEYM9AZN3DgSATBeAJFLg1zpnlHFPo2luFysiTB73Ig4FahcrY6jSIW7UREREREE1hbNAHDEtD6KTSdioygLdAWTYz4WnHDQkfUQDRhYtehdmzcWoe61ggMW0CVJdRM8eKKZTVYNKNkSK87WLjcqrnJcLl5FbkPl9McMgJuFT6NLfA0Nli0ExERERFNYKUeDaoiIWHZcMnpc8J1y4YqSyj1aMO+RixhoSOWQCxhAQB2HWrHT57ej2jCQsClIqBIMCyBd46G8ZOn9+PG8+cOWrgLkUy6v29bHbYczBwu9+GFlVifp3A5rzMZLOfWOFudxhaLdiIiIiKiCWxBVQC15T7sa+xERUDu1SIvhEBH1MD8Sj8WVA19lzqaMNEeNaAbVuprthDYuLUO0YSFMp8GCcnrOR0SynwaWsIJbNxah1NqijO2sFu2wEsHWnD/9jq80diZ9ng+w+UUWYLfpSLgcsDBFngqECzaiYiIiIgmMFmWcN2qWty8aQ+aQjqKPSqcigy9a1a6z6ngulW1Q2r9DusmOqKJtFZ1ADhwJIK61ggCLjVVsHeTkCyK61ojOHAkgrkVvtRjyXC5Jjywox4NHfG0151Z6sFleQqXc6oKAi4HfE5H2rl/orHGop2IiIiIaIJbMacMt61dmJrTHuw6Yz6/0p/1nHYhRFexbsCw0ov1bsF4AoYtEFAyF7+aIqFTCATjyTP0g4XLnVpThA1LarBsVm7D5SRJgtepIOBS4VLZAk+Fi0U7EREREdEksGJOGZbPnoK9DSG0RRMo9WhYUBUYdIddCIFO3URwkGK9W5FLgyonz7A7HemvnbAEVElCPGHjrqf3Dxgut2FJDU6o8A/tjQ7CIcupFHiFwXI0DrBoJyIiIiKaJGRZynqsm20LdMZNBGMGTHvwYr3bnGle1Ezx4p2j4V5n2gHAFjbaIzoUWcYtj+1ND5dTu8LlTst9uJxLVRBwq/BqClvgaVxh0U5ERERERCm2LRCKGwjGDFh237J6cLIk4YplNfjJ0/vREk7A71KhykAwngytS76m1et7Sr0a1i2ajo+cXJnTcDlJkuBzOhBwO+B05LYF3rbFkLsWiIaDRTsREREREcGyBYIxA6GYAVtkX6zbQuDAkQiC8QSKXBrmTPNi0YwS3Hj+XPzxlUN4u7kT0YSFTPX/zFIPNiypxrk5DpdTFRkBlwqfy5GXFvgtB1pS+QCGJaAqEmrLfVnnAxANBYt2IiIiIqJJzLRsBGMGOuPmkIp1IDmPfePWOtS1RmB0hdvVTPHiopMrcfBoGAePhhHWrbTvy1e4nFtLBst5nfkrc7YcaMHNm/YgrJso8WjQFBkJy8a+xk7cvGkPblu7kIU75RSLdiIiIiKiSci0bHR0FetiiMU6kCzYf/L0fkQTFgIuFQFFQjRhYc/hIHa83572/HyFy+WzBb4v2xa4+/mDCOsmKgKu1Nl4l6ygIiCjKaTj7ucPYvnsKWyVp5xh0U5ERERENIkYXfPZw/rwinUg2RK/cWsdogkLU7wqdEOgMawjkkjfVXepMj58UiXWL85tuJxDlhFwO+B3jV4K/N6GEA42h1Hi0dLC7CRJQrFHxcHmMPY2hLIO/CMaDIt2IiIiIqJJIGHa6IgmENbTZ6EP1YEjERxqCUORJdS3xxE309PlZQm4+OQqfOYDx+U0XG40WuD70xZNwLAENCXz+XunIiNoC7RFE6O8MprIWLQTEREREU1gumkh2LWzngsxw8ITexvRGjUyhstpioRit4qEbeOMOVNyUrDLkgSfy4GAS81pYN1QlXo0qIqEhGXDJae34uuWDVWWUOrRxmB1NFGxaCciIiIimoDihoWOqIFoIjfFelskgb/sPoy/7G5AKJ7+mm5VRolHg1dToFsCSJgoco2seFUVGQG3Cr/TURBnxBdUBVBb7sO+xk5UBOReLfJCCHREDcyv9GNBVWAMV0kTDYt2IiIiIqIJJJaw0BFLIJbhfPlwHGqL4oHt9fj7G00wrPStdZ9TQalHg0tN7jwLCHTGDcye6sOcad4hX0+SJHg1BX6XCreW32C5oZJlCdetqsXNm/agKaSj2KPCqcjQu3ICfE4F162qLYgbDDRxjF1vCYAXXngBF110EaqqqiBJEh555JG05+zbtw8XX3wxioqK4PV6sXTpUhw6dCj1eDwexxe/+EVMmTIFPp8P69evx5EjR0bxXRARERERjb1owkRDRwyNwdiIC3YhBF6r78C3Hnkdn7lnGx7f09irYHepMlYeX4Zpfg2qIgOSBFsIxE0bLeEEPJqCK5bVDGmcmyJLKPFoqClxozzgKriCvduKOWW4be1CzK/0I6qbaA7riOom5lf6Oe6N8mJMd9ojkQhOOeUUXH311Vi3bl3a4wcPHsSZZ56Ja665BrfeeisCgQD27t0Ll8uVes5XvvIVPP7443jggQdQVFSE66+/HuvWrcNLL700mm+FiIiIiGhMRHQT7dEEEhnC4IbKsgVePNCC+7fXYV9jZ9rjpV4N6xZNx0dOrkTArfaa094pBFRJwuypPlyxrAaLZpRkdU2nqqDIrcKrKWmJ7IVqxZwyLJ89BXsbQmiLJlDq0bCgKsAddsoLSQx3zkOOSZKETZs24ZJLLkl97WMf+xhUVcUf/vCHjN8TDAYxdepUbNy4EZdeeikA4M0338T8+fPx8ssvY/ny5VldOxQKoaioCMFgEIEAz58QERER5ZttCxY8I9QZN9ARNWBYIy/WY4aFp15vwgM76tEYjKc9PnOKBxuW1ODceeVpQXC2EDhwJIJgPIEil4Y507yD7rBLkgSvM5kC391WTzTZZFuHFuyZdtu28fjjj+PrX/86Vq9ejV27dmHWrFm46aabUoX9jh07YBgGzjvvvNT3zZs3DzNmzBiwaNd1Hbqup/4cCoXy+l6IiIiI6JgtB1pw9/MHcbA5DMMSUBUJteU+XLeqlq3FgxBCoFM3EcxRsd4WSeCR3YfxaD/hcqfWFGPDkmosm1XabyEuSxLmVviyut5YzFYnGu8Ktmhvbm5GOBzGD3/4Q3z/+9/Hj370Izz55JNYt24dnn32WaxatQpNTU3QNA3FxcW9vnfatGloamrq97Vvv/123HrrrXl+B0RERETU15YDLbh50x6EdRMlHg2aIiNh2djX2ImbN+3hmeB+CCEQiieLddMeebF+qDWKB3ZkDpeTJWDV3Km4fGkN5k7zj/hawNjOVica7wr2b43d9f+MPvrRj+IrX/kKAODUU0/Fli1b8Otf/xqrVq0a9mvfdNNNuPHGG1N/DoVCqKmpGdmCiYiIiGhAti1w9/MHEdZNVARcqfPLLllBRUBGU0jH3c8fxPLZU9gq38W2BTrjJoKxkRfrQgjsORzE/dvrseVga9rjLlXGhQsrsf60alQUuTK8wtAUymx1ovGuYIv2srIyOBwOnHjiib2+Pn/+fLz44osAgIqKCiQSCXR0dPTabT9y5AgqKir6fW2n0wmn05mXdRMRERFRZnsbQjjYHEaJR0sLHJMkCcUeFQebw9jbEMLC6qIxWmVhsG2BUNxAMGbAskcWQdUdLnfftjq82ZQeLjfFq2Htoum46JRK+F3qiK4FFN5sdaLxrmCLdk3TsHTpUrz11lu9vr5//37MnDkTALB48WKoqop//vOfWL9+PQDgrbfewqFDh3DGGWeM+pqJiIiIqH9t0QQMS0BTMu+6OhUZQVugLZoY5ZUVDssWCMYMhGIG7BHmRccMC0++3oQHhxEuN1SSJMHT1QJfqKPaiMarMS3aw+EwDhw4kPrzu+++i927d6O0tBQzZszA1772NVx++eU466yzcM455+DJJ5/EY489hueeew4AUFRUhGuuuQY33ngjSktLEQgEcMMNN+CMM87IOjmeiIiIKF+YkN5bqUeDqkhIWDZccnphp1s2VFlCqUcbg9WNLdOyEYwZ6IybIy7WswmXu3xpNZYdVzriEWsOWYbf5YDf5YCjn5sxRDQyY1q0b9++Heecc07qz93nzK+88kr8/ve/x9q1a/HrX/8at99+O770pS/hhBNOwEMPPYQzzzwz9T133XUXZFnG+vXroes6Vq9ejV/96lej/l6IiIiIemJCeroFVQHUlvuwr7ETFQG5V8EohEBH1MD8Sj8WVE2eEbymZaOjq1gf6STm0QyXc6kKAuNstjrReFUwc9rHEue0ExERUS71l5DeHjXgcyqTOiH92GdjodijwqnI0C0bHV2fzfcvOQlFbm3CdycYXe85rI+sWBdC4LXDQdy/rR4vv5M5XO7DCytxaQ7C5RgsR5Rb435OOxEREdF4xIT0ga2YU4bb1i5MdSEEbQFVljC/0o+zji/Db154Z0J3JyRMGx2xBCK6NaJi3bIFNr/dgvu35z9cTnMkg+V8GoPliMYCi3YiIiKiHGJC+uBWzCnD8tlTep33D8YS+NYjr0/Y+e26aSHYtbM+EoOFyx3XFS73wRGGy0mSBK8zGSznUhksRzSWWLQTERER5RAT0rMjy1LqpoVtC1x5z9YJ2Z0QNywEYwYiIyzWBwuXWzSjGJctrsbps0YWLqcq3cFyKpRx9lkTTVQs2omIiIhyiAnpQzcRuxPihoWOqIFoYmTF+mDhcmefUI4NS6pHHC7n0RwIuB3waCwPiAoN/1YSERER5RAT0oduInUnxA0L7dEEYglr2K8hhMCew0Hc10+4nFtVcOHJFVh3WjUqAsMPl2OwHNH4wKKdiIiIKIdkWcJ1q2px86Y9aArpGRPSr1tVO+7avPNpInQnxBLJYj1uDL9YzyZcbt1p03HRyVXwuYb/z3hVSQbL+Z0MliMaD1i0ExEREeXYQAnpEykJPVfGc3dCNGGiPWpAH0GxHjMsPLGnCQ/tHDhc7tz55VD76UbIBlvgicYn/o0lIiIiyoNMCekTdeb4SI3H7oSIbqIjNrJivS2SwKZdh/Hoqw3o7Cdc7vIlNVh6XMmww+XYAk80/kliJAMiJ4hsh9oTERERUf5sOdCS6k4wuroTCm1Oe1g30RFNIGHaw36N91sjeGBHPZ5+40jewuXYAk9U+LKtQ7nTTkREREQFoZC7EzrjBjqiBgxreMW6EAKvHQ7i/jyHy7EFnmji4d9mIiIiIioYPee3jzUhBDp1E8GuYt0WAgeORBCMJ1Dk0jBnmhfyIG3ryXC5o7hvez3e6idcbu2i6bjolEr4Xeqw1tmzBd4hS6N208O2RUHeYCGaaFi0ExERERH10LdYB4Bdh9qxcWsd6lojqdb9mileXLGsBotmlKS9Rrbhch+cVz7ss+aqIiPgUuF3JVvgex0vsARUJX/HC0bzWkSTHc+0g2faiYiIiChZrIfiyWLdtI+1we861I6fPL0f0YSFgEuFqkgwLIFQ3IBHU3Dj+XNThftohMtlaoHfcqAFN2/ag7BuosSjQVNkJCwb7V1BfretXZizYno0r0U0kfFMOxEREVGesT14YrBtgc64iWCsd7EOALYQ2Li1DtGEhTKfBgnJn6/TIaHMp6ElnMDGrXUo9mh4aEc9nt6XOVzunBPKcdkIwuUGSoG3bYG7nz+IsG6iIuBK3QxwyQoqAjKaQjrufv4gls+eMuLfz9G8FhElsWgnIiIiGga2B49/tp3cLQ/GDFh25ubTA0ciqGuNIOBSUwV7iki2qO+p78A1925P+95chMtlkwK/tyGEg81hlHi0tN17SZJQ7FFxsDmMvQ2hEecFjOa1iCiJRTsRERHREPXXHryvsRM3b9rD9uACZ9sCwZiBULz/Yr1bMJ6AYQsElGMFqhACYd1EW9SAnmH02xSvhnWnTcdFJ1fB5xreP7e9zuSuultTBn1uWzQBwxLQlMxn452KjKAt0BZNDGstY3UtIkpi0U5EREQ0BBOxPXiytPlb3cV6zICdZaxTkUuDKifPsKsyEOwe/Zah2J9V5sVli6tx7vxyqP0UtQNRZAn+rmC5oXx/qUeDqkhIWDZccnqRr1s2VFlCqUcb8prG8lpElMSinYiIiGgIJlp78GRo8zctu2tn3cRQM5jnTPOiotiN/U2dSFg2Mm3M+10O3LRmHk6fVTqscDnNcawFfjjfv6AqgNpyH/Y1dqIiIPd6DSEEOqIG5lf6saBq5IHLo3ktIkoa3nwJIiIiokkqm/ZgY5y0B3e3+e9rDMHrdKDc74TX6Ui1+W850DLWSxwR07LREtZR1x5DMGYMuWB/rzWCn/x9P/Y2hBA30wt2TZEw1afhlotOxPLZU4ZccPucDlQVu1Fd4kmemR9mmrwsS7huVS18TgVNIR0xw4JtC8QMC00hHT6ngutW1eake2I0r0VESdxpJyIiIhqCidIePBHb/LsZlo2OqIGwPvSddSEEXqsP4r7tdXjlnba0xyUkd8Z9moLjpvr6ndPen+4W+IDLAccwWuj7s2JOGW5buzDVNRHsmiU/v9Kf866J0bwWEbFoJyIiIhqSidIePNHa/AFANy0Eu4r1obJsgRf2H8X92+vx1pHOtMen+DSsPXU6TqwMwLBtFLk0zJnmhZzl7riqyCjyDL8FPhsr5pRh+ewpo5JPMJrXIprsWLQTERERDUF3e/DNm/agKaSj2KPCqcjQu3Z3x0t78ERKAY8bFoIxA5FhFOuxhIUnXm/EgzsOoykUT3t8VpkXG5ZU44Pzhhcu59Ec8DsdeKclgndaInkvbmVZGrWbLKN5LaLJjEU7ERER0RANtT24ENPZR7vNPx+fQSxhoSOWQCxhDfl7W8M6HtndgEdfbUBnPL3YP21GMS5fWoMlM0uGvDMuSxJ8ruTItu3vtU34oD8iyi8W7URERETDkG17cKGms49mm3+uP4NowkRH1EDcGHqx/l5rBA9sr8c/9h2BYfU+7y5LwAfnleOyxdU4fpp/yK+tKjICXSPbZFlKBf2FdRMlHg2aIiNh2amgv9vWLmThTkSDksRQ0zkmoFAohKKiIgSDQQQChX3+jIiIiMaP/oq29q42+rEu2o6tz8rY5p+L9eXyMwjrJjqiCSRMe0hrEELg1fog7u8nXM6tKrjw5AqsP60a0wKuIb02ALg1BQGXCq/z2H6YbQtcec9W7GsM9Qr6615PU0jH/Eo/7r1q2Zh3XRDR2Mi2DuVOOxEREVEejId09nyngA/lMwCQsWtBCNFVrBswrKEV64OFyxW5VWxYUo2LTq6CzzW0fxZLkgSf04GA2wGnI/14wUQM+su1Qjw2QlSIWLQTERER5cF4KdrymQKe7WewceshPLW3qVf7/OypXlx5xnGYVxkYcrEeS1j42+uNeHBHPY6E9LTHFVmC0yFDk4Gdhzowr8KPU2qKceBIBMF4YsBkeIcsI+B2wO9SoQzwGU2koL98KNRjI0SFiEU7ERERUR6Mp6ItXyng2XwGRxMWfvHM27BsgRKPBlWWEDdt7G3oxC2P7cWN58/Neg56a1jHpl2H8eirjRnHvjkdMlQlGa6nOWQYlsA7R8O47W/7MMWrJXfzu7oNaqZ4e81gd6kKAm4VXk3JKphutIP+xhOe9ScamqHPrSAiIiKiQfUs2jKZDEXbYJ9B3LQQS1jQDRvT/E44ZAmmEHDIEsp8KqIJCxu31sEeJILpvdYI7njqLVzxf/6FjVvrehXssgScO68c8yv98GgKKotccKkKZCm52+7RFLRFDLzTEoFLVTDFq8GtOfDO0TB+8vR+vNkYwvQSN6qK3fANYcZ6d9Bfe9RA3wip7qC/2nJfToL+xpO+RyZcqgJZluBSFVQEnAjrFu5+/iBse9LHbhGlsGgnIiIiygMWbYN/Bq3hBACBEq8KwxawbAF0PU2CBL9LRV1rBAeORNJeWwiB3XUduHnTHlz9++144vWmXmnwblXBZYur8b+fPR2XLa5Ba6eOgEuFhB6BcBBojxg9viJBlpIF5LSAC3HDxp+21UGVh/5PZlmWcN2qWvicCppCOmKGBdsWiBkWmkI6fE4F162qnXRnuIdybISIktgeT0RERJQH3UXbzZv2oCmkZ0xnz0XRVshhXgN9Bu2RBByyBM2hQJGkVLHek6ZI6BQCwfixIwSDhctN8WlYf1o1PrKwMhUud6itDYYtEFB6fy66IZCwLCgyYAvAFjYcigOylCwgS7zaiHIH8h30Nx6Np2MjRIWCRTsRERFRnuS7aOsZ5pUwbUACKgIufGzZDFyxbEZBFO99P4MOy4YiSTiuzIuVx5dh4yvvw7AEnI70tSYsAVWSUOTSBg2Xm13mxYYl1ThnXjnUPgVhkSt5Vr7vdSxhQwhAkgEJgEt19AqXy0UBmc+gv/GIZ/2Jho5FOxEREVEe5ato6xnm5XTIiBkWdNNGaySB7zy6F/dtO4Sb1swviN3cFXPKsKimGP96tw1HOuOpdHYA2Px2C945GkaZT0trXe+MG6gp8eD5t5vxWD/hcotnFGPD0hosmVnS73nzOdO8qJni7XUdSZKgKcmi0baTs9Zdau9iP1cFZL6C/saj7iMT+xo7URGQ0+bXd0QNzK/0T+hjI0RDxTPtRERERHnWXbStmjsVC6uLctIS3x3m5XM6cLQzgbhpQ5ElaIoECIE3mzpx06Y92HKgJUfvYnhiCQuNwRgaQ3HMmOLB0uNKMbfCB1lKnh+/YlkNPJqClnDyPdhCIG7aOBLSoZs29jaG8KcM4XLnzS/Hbz+1GHdcdgqWHlc6YEBc7+sYqbA7RUn+bASAMp8zYwE50XMHRhvP+hMNHXfaiYiIxolCPrtMo6s7zKvYraIpFIclkm33yaJTgkMRMC0bLWEd//XUW3jwuFI4HKO7VxPRTXTEDMQS5oDzzxfNKMGN58/Fxq11ONQSRptlI2HYSFjph9w9moILF1Zi3WnTMS3gynotsiTh7BPKMdXvxO82v4uDzWF0xk2osoR5FX40d+oI6xYcipyX3AHqjWf9iYaGRTsREdE40PPssmEJqIqE2nIf/4E7SXWHedkC0E0bjlTBDlgiWbDbAojpFvbUd+DS37yMr68+YVR+V8K6iY5oAgnTxq5D7di4tQ51rZF+558DwMnVxWiLJPCHV3QcbYumvWaZT8O6RdPxkVOq4HNm/89XVZERcKvwOx2QZQlnzS3HmXOmpt38euWdVhaQo6Dvjcd7rlyKfU2dvBFJNAhJ9J2/MQmFQiEUFRUhGAwiEGD7ExERFZaeZ5dLPBo0RUbCstHetRN429qFLCwmmT31QVz7h+0AgOZOPVW0W0LAMO1UELuqSLAF4NUcKPWqeftdEUKgUzcRjBowumay7zrUjp88vR/RhIWAS4WqJIPgQnEDHk3BjefPxQkVfvxtTxMe2jn0cLmBeDQHitwq3Fp60Fl/2MmSX7zxSJQu2zqUO+1EREQFrOfZ5YqAK7Wb6pIVVARkNIV03P38QSyfPYUFxiTSHea1pz6IY9PSkjvs3QV7cmxZMsBoqk9DMG7m/HdFCIFQ3EQodqxYBwBbCGzcWodowuoVMOd0SCjzaWgO6bjjqf0I62bmcLmZJdiwpHrAcLm+ZEmCz+VAwKVCG8ZRAIbF5U/fG4+qLKFTN/FqXRBffeBV3HHpyTjz+KljvUyigsWinYiIqIB1n10u8WhpxYskSSj2qCOaI03jU3eY100Pv4ZIwoRp2ZDl5K46kBxfpsgSLBtwqzLcmgJJlnL2u2LbAp1xE8GYAdO20x4/cCSCutYIAi61VyK8blpojxoIxU0E472LdUWWcM4JU3H5khrUlvuyXouqyAi4VPhdDt64KkB9bzxGuoIJdTM5bi+sG7j+T7vwy48vYuFO1A8W7URERAWs++yy1k9rcC7mSNP4tGJOGW5fdzJuf2If3mjshNkV3CYBULra4hVJwlR/skMjF78rtp1sbw/GDFh2/ycsg/EEDFsgoEgQIpkM3hY1EE1Yac/tDpdbf9p0lAdcsIXA/qZwv8F13dyagiK3Co/Gf84Wsp43HiMJC4fbY7C60vslCbAEEIoZ+NqDr+HHl53CVnmiDPj/5YiIiApYqUeDqkhIWDZccvr53FzNkabxacWcMvzli2di49ZD+J8X38V7rRFIUnJv26XKmOp3pYLbRvK7YtkCwZiBUMyAnUUcUpFLg0MCOqIGOnUTupm+Gy9LwCWnTsdnPnBcao2DBddJkgSf04GA2wGnI/vz6jR2um88qrKExmCsz6QDQJGSN4Oieu6PbxBNFJzTTkREVMC6zy63Rw30zY4dr3OkbVtgT30Qz+8/ij31QdgD7NiOtkJeW39kWcInl8/E3//9LJxcXQyv5sCMEg+Om+JNFcPD/V0xLRutYR2H2qLoiCayKtijCROvHm5HMG6hJZJIK9g1hwyPpuCUmmJ84ZzaXgX7T57ej3eOhuHWHJji1eDWHHjnaBg/eXo/3j7SiRmlHkz1O1mwjyPdNx67b970nHQAAEIkf4cD7mNHfYioN+60ExERFbDus8s3b9qDppCOYo86rudIF3KCdCGvLRsOh4yvrz4BN2/ag2DchCRLw/5dMbq+J6ybaTeL+tMa1vHwrsN47NXGjOFyblWGz6XCMC14nQ588vQZqbb3/oLrXGqywG/u1PHHfx3C+SdWDOEToULQfePx1boghEiGI3YTELBsAZeqwO9y4Gg4waM+RBlwp52IiKjArZhThtvWLsT8Sj+iuonmsI6obmJ+pX9cjXvrTpDe1xiC1+lAud8Jr9OBfY2duHnTHmw50MK1jdBIf1cSpo3mzjjq2qLojKd3d2TybksE//XkW/j47/6FP22t61WwyxJQ6tVQ4nbApSmQhEBtuR83nj+315z2A0ciONQShtMhI5qwkOjakdUcMhyKjBKvxl3Ycar7xqPXqcAWApYQEBCwhYBpCciShKl+JxJdLfQ86kOUjjvtRERE48CKOWVYPnvKuJ0jXcij6wp5bcMxnN+VuGEhGDMQybBDnokQArvrOnD/9nr86922tMc9moKPnFyJdYumo8zvxIEjkQGD5XYcakd7zABEcnydLEtwOo6dyWfg4vi2Yk4Z7rj0ZFz/p13JXARbQJYluFQFU/1OeDUFTSEd8yv94+qoD9FoYdFOREQ0ToznOdKFPLqukNc2XNn+rsQNCx1RA9FEdsW6ZQs8v/8o7ttWh7ebw2mPl/k0rD+tGheeXJk6qw4Acyv6H+G2pz6IR189DMsGHIoEhyRBAIgZNg63xzC9xA1FlrgLO86defxU/PLji/C1B19DVDcRcCfH9CUsgaaQPu6O+hCNJhbtRERElHeFPLqukNeWL7GEhfZoAnEjfQRbJtGEib/tacJDO+txJKSnPT57qheXL6nB2SdMhdrP59iXR3PA51Tw4M56WLaAR1OSoXUyIEOCKgOGLdAcisOlKjixKsBd2HHuzOOn4seXnZLKjjgaTkCVJcyv9I+b7AiiscCinYiIiPKukEfXFfLaci2im+iIGdCzLNZbwjo2DRAut2RmCTYsqcbimSVpXQqZyJIEn8uBgEuF5pCxpz6Y6nLwuwQOt8dgWgKKnAwskyUgZlgIuFXuwk4Q4/2oD9FYYNFOREREOWfbotc/yudX+FFb7sO+xk5UBOQ+I5+S48jG6jxrd7p1Ia4tV8K6iY5oAokM89Izebclgge21+Mf+47A7DP2TpElfHBeOTYsrkZtef9t7z2pipxsh3Y6ehVnPbscXKqE6SVuHO3UoZsWhA0AAoos4dNnzOQu7AQyno/6EI0FFu1ERESUU/2NTjvr+DLUtUULbnTdRBur100IgU7dRDBqwLAGL9a7w+Xu216PrQOEy60/rRpT/c6s1uB1JnfV3Vrmuep9uxx8Tge8TgXxhA3TtmHZyZFgZ86ZmtX1iIgmIhbtRERElDPdo9PCuokSjwZNkZGwbOxr7ERdWxSfOH0GXni7BQebwwjaomDOs3aPSuu+2VBIa8ukbydDz/ZiIQRC8WSxbtqDF+uWLfDcW0dx//bM4XJTfU6sXzwdH17YO1yuP4oswe9SEXA54BjkfHumLgcJEtyaAiFkJooTEWGMi/YXXngBd9xxB3bs2IHGxkZs2rQJl1xyScbn/tu//Rt+85vf4K677sK///u/p77e1taGG264AY899hhkWcb69evxs5/9DD5fdu1aRERElBvZjE574e0W3HPlUuxr6iy486zj5axtf50M1541GydNL0IwZsCyB5+v3h0u9+COejR3pofL1U71YsOSGpxzwtRBi28AcKoKAi4HfE5HVufbgYnb5UBElEtjWrRHIhGccsopuPrqq7Fu3bp+n7dp0ya88sorqKqqSnvsE5/4BBobG/H000/DMAxcddVV+PznP4+NGzfmc+lERETUR7aj0/Y1dRbsedZCP2ubqZNBNy3sbQjhGw+9hhvPn4tFM0oGfI2WsI6Hdx7GY681IKKnB9INJVxOkiT4nA4E3A44Hb1b4AfqBuhpvHU5EBGNtjEt2tesWYM1a9YM+JzDhw/jhhtuwFNPPYULL7yw12P79u3Dk08+iW3btmHJkiUAgF/84hf48Ic/jDvvvDNjkQ8Auq5D14/dUQ6FQiN8J0RERDRZRqdlW4zm47o9OxmAZGu7LEuY4lXREk5g49Y6nFJTDDlDsf1uSwT3b6/DP/c1jzhcTlVkBFwqfC4HlAzvvb9ugP6K8Hx0OYzVz4mIKNcK+ky7bdv41Kc+ha997WtYsGBB2uMvv/wyiouLUwU7AJx33nmQZRn/+te/sHbt2oyve/vtt+PWW2/N27qJiIgmo8kwOm2gYjTfrfXdnQzFbhWmLWALAXTV3hKS58jrWiM4cCSCuRXJwlsIgV11Hbh/Wx22vtee9prernC5dVmGyw0WLAcMnGtw86Y9uG3twoyFey67HIZ604CIqJAVdNH+ox/9CA6HA1/60pcyPt7U1ITy8vJeX3M4HCgtLUVTU1O/r3vTTTfhxhtvTP05FAqhpqYmN4smIiKapAp9dNpId14HKka/cv9ulPudaA0n8lYkNnfGoRs2PJoCO8OZdU2R0CkEgvEETMvG8/uP4r7t9TgwwnA5Re5ugVehDnK2PZtcg7ufP4jls6fkbdd7uDcNiIgKVcEW7Tt27MDPfvYz7Ny5M+swk2w5nU44ndmNKiEiIqLsFGKoWHeh/uKBFjy1twnNofiwiuqBilGf08ahtijaIgnMLPXA6VByWiTqppUc22YKKDJgWAJOR/pnmLAEFADb3m3Hj/++f8Thcprj2Gz1bP8tlm2uwd6GUF6yAwrhpgERUa4VbNG+efNmNDc3Y8aMGamvWZaFr371q/jpT3+K9957DxUVFWhubu71faZpoq2tDRUVFaO9ZCIiohGZCGdwCylUrLtF+o2GINqjBgDA6VBQHnBCU+QhFdX9FaMCAi3hBI59RYIsSzkpEuOGhY6ogWjCBADMmeZFzRQv3jkaRplPg9TjqoZl4UhIh2kJPLizPu21sg2XkyQJXk1BwK3CpfbfAt+fbHMNWiI69tQHc/67PtY3DYiI8qFgi/ZPfepTOO+883p9bfXq1fjUpz6Fq666CgBwxhlnoKOjAzt27MDixYsBAM888wxs28bpp58+6msmIiIarol0BrcQRqd1t0h3xg3EEjYkCVAkCYZlo7EjjuklblQEnFkX1f0Vo/GEDd20oMgSbIGuuejJYne4RWIsYaEjlkAs0TvZXZYkXLGsBj95ej9awgn4XSqEEGiLJBBJpKfAp8LlllSjdurA4XJDma0+kGxyDWzbxs/+8fawux4GMlnCEIlochnToj0cDuPAgQOpP7/77rvYvXs3SktLMWPGDEyZMqXX81VVRUVFBU444QQAwPz58/GhD30In/vc5/DrX/8ahmHg+uuvx8c+9rF+k+OJiIgKzUQ8gzuWo9N6tkgXuzWE4lE4ZBmyJEGGgGkJHO3U4S3zZF1U91eMmrYNIQBJBiQADrl3sTiUIjGaMNERNRA30gvwbotmlOAr5x2P37zwLt5vjSBhpZ9t92oKLjy5EuuzCJcbzmz1gQyWa9Ac0pGwLNS3R/Pyu57LMMSJ0PlCRBPDmBbt27dvxznnnJP6c3c43JVXXonf//73Wb3G//7v/+L666/HueeeC1mWsX79evz85z/Px3KJiIhyjmdwc69ni7RhdRXVXR+dBAmKnDwnHk/YcDqyK6r7K0aTRbqAZQGaQ4FhWUACcGkyJEhZFYkR3URHzIA+QLEOIOtwuQsXVsI7QLicJEnwOhUEXMNrgR/IQLkG7ZEEEpYFp0PO2+96rsIQJ1LnCxGNf2NatJ999tkQIv0OcX/ee++9tK+VlpZi48aNOVwVERHR6OEZ3Nzr2SLdXbALIHUCXJIAYXe1slvIaue1v2IUkoAAYInkjYDDHXFIUvLs/BSvimDMRHWJG7YQsLtmqgPJAjKsJ3fWDcse8NrRhInHX2vEQzsP9xsud/nSGpw9d+BwOYcsI+B2wO9SM85Wz5X+cg1qSj2oa4ui1Ju/3/VchCFOxM4XIhrfCvZMOxER0WTAM7jDM1Drcq8WaVWG0yEjZthQ5WRx2F3IK5I04M5r32ssnz0lrRi1bQFFkmBDQALQtfGOqG4irJuQJaCuHbjujztQW+7Dv501GydVFyMUG7xYP9qpY9Ouw3jstQZE9PRd+KXHlWDDkhqcNqN4wNZ2p6qgyK3Cqyk5n8jTn0y5Bq1hHV978LW8/66PJAyRnS9EVIhYtBMREY2hXJ7BnSwGa13u3SLtxFS/C4fbYzBsAUUWsCwBzaEgGDfgczoy7rwOdI17r1qGvQ0htIZ1/PSfb6OuLQK/S0VLWIdu2rBsge5yXFUkTC92IWHa2NsQwtcfeg03nj8Xi2aU9Pv+3jkaxgM76vHPfc0w+8xjV2QJ584rx2WDhMuNNAU+F/rmGuypD47a7/pwwxDZ+UJEhYhFOxER0RjK1RncySLb1uW+LdKVRS40d+rQTQsSAI+mYH5lIOPOa8/keY/mgKrIsIXAGw2hXtfYUx9EcyiOUq8TTocMRZIQTZhojSZgmgIORYJlC8QSNlSHhCleFS3hBDZurcMpNcWQ+/ysdx3qwH3b67Dtvfa09+3VFHzk5EqsGyRcLlcp8Pkw2r/rwwlDZOcLERUiFu1ERERjKBdncCeLobQu922RNmyBYrcD04r8WL1gGs6cMxXzK/zY19SJ5/cfTe3EAsDdzx9EWyQByxYIxeOpdnpNkWFYInWN7gIvYdpoDMagmzZsG7C68npsISAEkLAsqIoDEpIFdV1rBAeORDC3wgfTsvHc/qO4f1s9DhzNHC536eLp+PAg4XKqIqPIo8KfoxT4fBgPv+vsfCGiQsSinYiIaIyN5AzuZDLU1uWBWqS3HGjBVfduS2t/X72gAm80BBEzLNgCcMhSKsgubtqQJRtvNASxtyGEUo8GW9hoCCZSzz3WGA+YNiBLgCId27XVFAmdQuBIZwyv1rePOFzO63Qg4FLh1samBX6oCv13nZ0vRFSIWLQTEREVgOGewZ1MhtO6nKlFeqAW+7caQ+iImQAEVPlY0SYBUGXAsG2E4iZaIjpW1pbBEoBpCahKcpycJEvJKPkuQgCa49jPMGpY0BMWfvjEW4hlGPGWTbicLEnwuxwIuFWoeW6Bz8es8kL+XR8P3QBENPmwaCciIioQwzmDO5nkonV5sBb791qjsOzkznum3XxZkmDbAh0RA/uaOiEjuZtu2YCQRbJK70EAqGuPodijIpqw0Bk309akyBI+OK8cGwYJl1MVGQF3sgV+NIrGfM4qL+Tf9ULvBiCiyYdFOxEREY0LuWhdHqzF3u9SENZNWF1J8xJ6XAPHZq17NQUHjoYhAEwrcqEjYiBuJlvq+9JNG0dC6S3wXk3BRadUYe2i6QOGy3k0B4rco9sCP9lnlRdyNwARTT4s2omIiKggZWrNHmnr8mAt9m7VAUnSISHZ9q7IyRA6IQCrqyL3ag7YAnA7FKiyBFWWMb3EhUNtMSRMG4rc9fwMBTwAlPudWH/awOFykiTB50wW65pjdFPgOas8qZC7AYhocmHRTkRERAVnoNbskbQuD9ZiL0mAKsvQHFJX8rsN2xLJrysyFFlGbbkPc6Z5AQA1U7x452gYPqcDpmVDkpIBdJk4ZOBTy4/Dx5fV9Bsup8gSAi4VAbcKZYwKYs4qJyIqLCzaiYiIqKBk05p971XLhtW6PFiLfTBm4oQKH0JxE+G4gWK3mmyLF8k2d4+m4IplNakZ61csq8EdT72FpmC83511j6ag2K0iapiYV+nPWLBrDhlFbhW+AhjZxlnlRESFhUU7ERERFYyhtGYPZ5c3m3Twr6+eh0jCxP/Z/C4OtUZgCAFVkjB7qg9XLKvBohklAIB3jobx1N4jaO7UM55l92gKpvo0OB0K4qYNzZJR5NL6PGf0z6sPhrPKiYgKC4t2IiIiKhij0ZrdXzr4CRU+fGLZDFSXeiCEwA/XL8SBIxEE4wkUuTTMmeaFBGDH++24f3sdtr3XnvH1/U4HynwqVCVZ8AoIdMYNzJ6abKsfy/Pq2eCsciKiwsKinYiIaJLJx+ztXBmt1uye6eCNoRg0WUZ1qRuyJEF0jW2TJQlzK5Ij2EzLxjNvNuP+bfU4cDSc9nrlfieWzy7FtvfaEDdsWEKCIgQSVrJg92gKPnn6DJT5nPC7xu68ejY4q5yIqLCwaCciIppE8jl7OxdGszU7algo9WnwOvtvTY/oJv62pxEP7TyM5s70sW1zpvpw+dJqrJo7FQ5Fxq5D7di4tQ51rRF0drXVzyn34dqzZuPc+dPG/Lx6tjirnIiocEii+3byJBYKhVBUVIRgMIhAgK1eREQ0MfUX8NbetXs61NnbA+3YD3c337YFrrxna1drtjOtNbsppGN+pR/3XrVsWDu9Qgh06iaCUQOG1U/MO4CjnToe3lmPv77WiEjCSnt82XEluGxJDU6bUZxWiNtC4MCRCOKWhelFbiyeWTJud6ULuSuDiGi8y7YO5U47ERHRJJDr2dsD7dgDGPZufr5as4UQCMWTxbpp91+sHzwaxgPb6/HPN5tTc9m7OWQJ584vx2WLqzF7qi/z+iUJRW4V557ohdpPi/94wlnlRERjjzvt4E47ERFNfHvqg7j2D9vhdTrgUtPbwWOGhahu4jefWjJokTbQjn13nWrZYkS7+b1uCnS1Zg+njd+2BUJxA8GYkVaEdxNCYOehjn7D5bxOBRedXIW1i6Zjqt+Z8TVURUbArcLvdGR9Q4G72EREkxt32omIiCglVwFvA+3YTwtI2H8kGdI2t9wHWZZTjw11N79nUNxwilrTshGKmwjFDNj97E+Ylo1n3zqK+7fX4eDRSNrj5X4n1i+uxoULK+DRMv+Tya0pKHKr/T7en7HMFuDNAiKi8YVFOxER0SSQq4C3gUay6YboSl6XoJsC7h4vNZxxbcNpzTa62ujDuon+mgkjuonH9zTi4f7C5cp9uHzJsXC5vkY6sq2/ToV9jZ24edOeIWcLDPXahRxESERE6Vi0ExERTQK5mr090I69adsQApAkdJ0b731zIFfj2jKJGxZCsWSx3p9Bw+VmlWLDkmosqkkPlwMAhywj4HYMaWRb313t+RX+nGYLDMVY3iwgIqLhY9FOREQ0CeQq4G2gHXuHLKO71nXI6UV9Lse1dYslLHTEEohlKMK7ZRMut2FJDWaVeTN+v1NNtsB7NWVII9sy7WqXB1yoa4ui1JveqTCcboRs5TqIkIiIRg+LdiIiokkiF7O3B9qxd6pS6s9OR+/Cbyi7+dkI6yY6ogkkzMxJ8N3hcvdtq8P29zOHy118SjJcrsznhC0E9jeFEYwnUOTScPw0H/wuBwJuNWNw32D629V+52gEEd2Az5U5EDBf3QgDHWvI580CIiIaORbtREREk8hIA94G27Gf4tUgABzpTORsXFs3IQSCMQPb3mtHW0RHkUvDnGleyD2K0GzC5S5dXI0P9wiX23WoHRu31qGuNQLTBlRFwvHTfPjC2XOG1S4+0K72VJ+GsG6gOaTD73JAQp9cgDx0IwC5CyIkIqLRx6KdiIhokhnp7O3BduwBjGg3v6/usW3PvtmMP/7rEOpaI6kxcDVTvLhiWQ3mTvPj8T2NeGjHYRwNp4fLHV/uw4YlNTj7hKm9zqPvOtSOnzy9H9GEhRKPBpdDhmELvNkUHvY574F2td2aAqdDgW5aiOkWPM5j/xTLdTdCT7kKIiQiotHHop2IiIiGbLAd+5Hs5nfrObZt23ut+K8n30I0YcHvcqDUrcK0BA4c6cR3Ht0L0xKIZ2iVXzarFJcvqcapGcLlbCFw3/Y6xA0L04vdqccVBQOe8x5sZNpAu9qSJKHc70RdexQtYR1TZSmn3Qj9yVUQYaHjODsimohYtBMREdGwDLRjP5Ld/L5j23a834bv/nUfwnETEgDdtNARNSDLEqIZAugcsoTz5k/DZUuqM4bLdY9sq2uLor4thlKvM+tz3tmMTBtsV1t1yCjxqKgp9aI5FM9JN8JgchVEWMg4zo6IJioW7URERFQQdNNCMNp7bNuuQ+34ryffQjhuQpaS4+Qsu3ukXG9uVcEli46Fy/XVd2TbG42hIZ3zznZkWja72idWFeGeK5diX1PnqO0K5yKIsFBxnB0RTWQs2omIiGhM9Te2zRYCG7fWIdJVxNsCECL9+x2yBNUh4aYPnYAzj5+a9rjmkFHkVuFzOnoV0EM55z3UkWnZ7Go7HPKoJ7WPNIiwEHGcHRFNdCzaiYgo53iulLIR1k0EYwZ0I/OM9T31IbzVGELctJGhVgcAyBIwxatCCKDc7+71mNfpQMClwq1lHtk2lHPeQx2ZVsi72iMNIiw0HGdHRBMdi3YiIsopniulgQgh0KmbCEYNGFbmGetHO3U8tLMef9ndAD1DuJwsAYokAZKAZQER3cIJlYHU+Defy4Eitwq1n7b31OsM4Zz3cEamTcRd7ULEcXZENNGxaCciopzhuVLqT/fYtlDMzHgeHQAONodx/456PPNmMyw78966BECRk9PNbQEIAB5NwaeWz8BUnwt+l2NIRXG2O+LDHZk20Xa1CxHH2RHRRMeinYiIcoLnSnNnIh0v6Dm2zc5wID2ZDt+O+7bXY8f77f2+jkMCrK4i3bJFqmj3uxz4wdqFOH9BxbDXmM2O+GQZmTYe8WdDRBMdi3YiIsoJnivNjUI4XpCLmwZ9x7ZlevzZt47i/u11eOdoJO1xWQJKvRo0h4yjIR2WEHAogGkld9qdDhk+pwN3XnZKxvC5ocq0I973c7j2rNn41iOvT9iRaePVZBhnR0STG4t2IiLKCZ4rHblCOF4w0psGmca29RTWTTz+WiMe2lmPlnD678KMUg86IjqKPRpcarLVWS6S0BbWkbDs5Mg3S2BOlR9fX31C3j6P/j6HT5w+Ay+83VJw4XKTXSEH/xERjRSLdiIiygmeKx2ZQjheMJKbBnHDQns0fWxbt+ZQHA/vOoy/vtaIaIbnnD6rFJcvrUHCtPCjJ9+C5jh288erOeCf4kDCtGHaAsG4gS+fd3xeC/b+Poe6tii+f8lJKHJro358YSIdm8gHBv8R0UTFop2IiHKC50pHZqyPFwx002CaX8Lhjjhu+9s+/GDtQiycXpQqhKIJE+3R/se2HWwO477tdXj2raNp4XIOWcJ586fhsiXVmFXmBQDsbwpDlSUYloBbk6FIUupaDkVGzLDgURWUeZ05/wwG+xy6b5785oV3cO9Vy0a1GCyEYxPjAYP/iGgiYtFOREQ5wXOlvQ11V3Ssjxf0d9MgrJs42hlH3LDxRmMIn713O+ZV+vGZM47DCZV+JDKMZBNCYPv77bh/ex12vN+R9rjP6cDFp1Ri7aLpmOLrXXwfP82HWVN9ONAcht/lGPWbP2N98ySTQjg2QUREY4dFOxERpYy0/ZbnSpOGsys61scLMt00COsmDrfHYAkBRQZsE1Bk4PXDIXz70ddx4/lzsWhGSer5g4XLaYqMNQsr8LmVs+DRev8TRJElBFwqAm4VXz73+DG7+TPWN0/6KoRjE0RENLayLtobGhpQVVWVz7UQEdEYylX77WQ/VzrcXdFcHi8Yzs2XvjcNhBA42hlPprZLgBCALAOaosDvktASTmDj1jqcUlOMaMLCX19rxMP9hMs5HTL8TgdM28b299pw1vFlqWJfc8gIuFX4ncd21cfy5s9Y3zzpqxB3/omIaHRlXbQvWLAA//3f/40rrrgin+shIqIxkOv228l6rnQku6J9jxcUuR0QAogZFmIJC0VuR1Y7zMO9+dL3pkHcsBE3LCiSBNGV2O50KHCqEiRI8LtUvHc0jB8+8Ra2HGzJGC7n0RSUelS4VQWSJEFApIr9M2aXocSrwa2lF8bA2N38KbRshkLb+SciotGX+b8AGfzgBz/Atddei8suuwxtbW35XBMREY2ivoWmS1UgyxJcqoKKgBNh3cLdzx+EbafP2qbehrIrmkn3DnNlkRN1bTG81xrBkVAckYQJSZLwTktkwJ9D982XfY0heJ0OlPud8DodqZsvWw609Pu93TcNfE4FjcE4QnEDQiQLVcsSkCUJpT4NEqRkUnxER2vUwD/2HelVsDtkCS6HjMqAC9XFbni0YzvokiShyKOioT2K1kii34K955oWVhdh1dypWFhdNCrdGj0/h6aQjphhwbYFYoaFppA+6tkMPXf+M+FUBiKiiS/rov0LX/gCXnvtNbS2tuLEE0/EY489ls91ERHRKBlpoUnHZLMramSxKxqKm/BoCko8KjRFhrAF3m+N4juP7sVH//vFjMV3z5sv0wJOCAFEEiaEAKYFtKxuviw5rhRfX30CZpV5YVg2bAHYAnA6FJQHnBC2QH17DIfaY+jUe++s+5wOXLGsBt/40Alwawq8zh4FuZQ8s64pMryqA6bAqO4M27bAnvognt9/FHvqg4PegOq+eTK/0o+obqI5rCOqm5hf6R/10Lfunf/2qAEheq+7e+e/ttzHqQxERBPYkILoZs2ahWeeeQa//OUvsW7dOsyfPx8OR++X2LlzZ04XSERE+cX229wZ6Xno7sI7opso9qho6IjDFgKKIkOBgGkJvNnUiZsefg23rzu5V/HYffPF6VDwfmsMumlBCECSkkV3kbv/s89xw0IwZiCim5hXGcAP1y/E/iNh/OTpt9AUjMOjKTjamci42zst4MSli6vx4ZMq4daUXiPbXKoMRZYgS0jdEIqb1qjuDA/3uEChZDNwKgMREQ05Pf7999/Hww8/jJKSEnz0ox9NK9qJiGh8KbTgrfFspOehuwvvYo+KpqAOWwg4lOQZckCCQxGwhUAwZqadjW+LJhBJWIjqJgSSO9uSnAyQixsWdMOCx+nodfMllrDQEUsg1uc8uixJqC5xY16FH+8cjSCsp59XVxUJly+twZVnHAelR8E4Z5oXx0314mBzZExGtvU00qyGQslm4FQGIqLJbUgV9+9+9zt89atfxXnnnYe9e/di6tSp+VoXERGNkkIL3hov+ktoH8muaHfXg20DumklC28ce66EZBHu1pS0XfNit4q4YcEWAqpDTn2fJAGSAhhmMliu2K0iopvoiBnQjfRivDkUx0M7D+PxPY0Zw+U0RcJxZV58fuUsnDaz9NjaJAlep4Jit4Z/P3fumO8MT7RRaYWy809ERKMv66L9Qx/6ELZu3Ypf/vKX+PSnP53PNRER0Shi++3QDdZyPdCu6PLZU7CnPpix8OrueogbXa3tfU4sCCSLcLeqoFM3044spI48CwBS728UIlnINofi8LvS//N/oDmM+7fX4dm3jsLqc+ZbVSQsPa4Up88uxQnlAcyZ5oXcVQTLkoSAW0XA5YCj64hFIewMT8RRaYWy809ERKMr66Ldsiy89tprqK6uzud6iIhoDBRCkTVeZNtynWlX9JV3WnHlPVv7Lfa7ux72HA4CEBBCQne9KYSAaQu4VRmShLQjCx0xA25VQcwQMGwBh5ys2+2u71NkwKkqaIsmUItjr7n9/Xbcv60OOw51pL1Xn9OBi0+pxNpF0zHF5+z1mEOWUeRW4Xc5Mt7QGeudYWY1EBHRRJF10f7000/ncx1ERDTGxrrIGg+G2nLdc1c022L/ulW1uGnTHkR0E6Zlw6Ekz7ObtoAiSSjzORGMmWlHFko9GrxOBT6XgmDMOLZbLwEuhwyfywEIoMilwbBsPPtmM+7fXo93WiJp77Mi4MKli6djTVe4XE+aI1ms+5yOtB3svnK9M9zfkYRM8p3VMJS1EBERjQRT5IiIKIXttwMbbsv1UIr9FXPKcPvahbj9iX14o7ETCUtA6Sq8izwqwrqV8chC9y79Gw0hTC9yIWYIWMKGIsnQHBJaIwnMmOLBjkNt+I+/7EFrOH2Hee40Hy5fUoOz5k7tFS4HAB7NgSK3Ouhs9XwZagp8PrMahptIT0RENBxZz2nPhxdeeAEXXXQRqqqqIEkSHnnkkdRjhmHgG9/4BhYuXAiv14uqqip8+tOfRkNDQ6/XaGtrwyc+8QkEAgEUFxfjmmuuQTgcHuV3QkREk8Fw57APpdgHkl0Pf/nimbj14gVYUBlAsaerWBbod1a4Ydv42NIauFQZzeEE0HX2HRJwtFOHYdl4s7ETv9v8blrBvnx2Ke7acAru/sRpOGdeeapglyQJPpcD00vcqChyjWnBfvOmPdjXGIJHU1Jn8vfUB3HTw69lnFvfndXgcypoCumIGRZsWyBmWGgK6cPOaui5Fq/TgXK/E16nI9UxkWktREREIzGmO+2RSASnnHIKrr76aqxbt67XY9FoFDt37sR//ud/4pRTTkF7ezu+/OUv4+KLL8b27dtTz/vEJz6BxsZGPP300zAMA1dddRU+//nPY+PGjaP9doiIaIIbbsv1cM5Xy7KETy6fiSuWzRiwDTuaMBGMGYglLMyvDODG8+di49Y61LVG0G7aSJg2dDN9vrqqSDh//jRcuqQax03x9npMkSX4Xb3D5cZKzy4Fn9OBplAcummnWv8jCRO3P7EPf/nimWkFeK6zGiZaIj0REY0PY1q0r1mzBmvWrMn4WFFRUdo5+l/+8pdYtmwZDh06hBkzZmDfvn148sknsW3bNixZsgQA8Itf/AIf/vCHceedd6Kqqirv74GIiEbPWJwj7nnNYreKWWUe7G3oRJFbharIcKnJ1uuBWq5Hcr4605EFIQQ6dRPBqAHD6l2Qn1pTDN208f9efh9vNnWmvZ7f5cDFp1Rh7aLpKPX2vp6qyKkk+MHOq4+W7i4Fp0NGQ0cclhBwyMmAPgHAtGy80diJjVsP4ZPLZ6Z9fy6zGiZiIj0RERW+cXWmPRgMJv+jWFwMAHj55ZdRXFycKtgB4LzzzoMsy/jXv/6FtWvXZnwdXdeh63rqz6FQKK/rJiKikRuLc8R9r2kLAd20EE1YCMYNKJIEZ9dZ84Qp+m25ztX5assW6IwbCMVMmHbvYt2wbDzTFS73br/hctVYc1JFWpu7U1VQ7FbhdRbePwvaogkkTBsxw4Ilkjvl3Z+fBMChSEiYAn/aeghXLJuRsRjPVVYDE+mJiGgsFN5/nfsRj8fxjW98Ax//+McRCCT/UdPU1ITy8vJez3M4HCgtLUVTU1O/r3X77bfj1ltvzet6iYgod7JNXs/nNROWjcPtMVi2gCxL0GQJpm0jmrAQN22cWOnHTWvmZ1xH9/nqmzftQVNIR7FHhVORoVs2OqLGoOerDctGMGagM25CiN4z1MNxE399rQEP7TqcMVzuhGl+XL60GiuPzxwuV+xR4VLH5qx6Nko9GiABuml37bD3/YwkKLJAc0jP+w53vhPpiYiIMhkXRbthGNiwYQOEELj77rtH/Ho33XQTbrzxxtSfQ6EQampqRvy6RESUe2NxjrjvNSEBjcE4AEBzSDBtQFEkTC/2wrRtBOMmitwals+e0u9rDud8ddywEIoZCOtm2mNHQnE8tLMej7/WhJhhpT2+fHYpLl9Sg5Ori3oVupIkwetUUOzWoDnG9rx6NhZUBVARcKE1kkCyTO7RpQAByxZwOpKP5HuHO5+J9ERERP0p+KK9u2B///338cwzz6R22QGgoqICzc3NvZ5vmiba2tpQUVHR72s6nU44nc68rZmIiHJnLM4R971mLGFBNy0osgRZkuCQBRKmDUmSEHBrUB0K3jk6+BqyPV8d0c3UrPW+3j7Sifu31+PZt5ph9950HzBcTpYkBNwqfJqCt46Esa+xc1zMF5dlCR9bNgPfeXQvTEvAoYjkeXaRPC4gSxKKPRqEEHnf4R5pxwQREdFwFHTR3l2wv/3223j22WcxZUrvHYwzzjgDHR0d2LFjBxYvXgwAeOaZZ2DbNk4//fSxWDIREeXYWJwj7ntN0+5KK+9agoRk0Zg8V64MaQ39na8eKFxOCIFt77Xj/u112HmoI+17u8PlLjm1ClN8vW9KO2QZRW4VfpcDr7zTOi7ni1+xbAbu23YIbzZ1wrJtAMkgOpeqoMynIaxbo7bDnetEeiIiosGMadEeDodx4MCB1J/fffdd7N69G6WlpaisrMSll16KnTt34q9//Sssy0qdUy8tLYWmaZg/fz4+9KEP4XOf+xx+/etfwzAMXH/99fjYxz7G5HgiogliLM4R972mQ5ZTu7vdqeWSlCyIR7qG7nC5YMyA1WfrvDtc7oHt9XhniOFyqiKj2KPC50wmwY9FLkCuyLKEm9bMx02b9iAYM+BRFbhUBbIMdETNUd/hzmUiPRER0WAk0TfRZhQ999xzOOecc9K+fuWVV+KWW27BrFmzMn7fs88+i7PPPhsA0NbWhuuvvx6PPfYYZFnG+vXr8fOf/xw+ny/rdYRCIRQVFSEYDPZqvyciorFn2wJX3rO16xyxM+0ccVNIx/xKP+69allOz7T3vCYk4L2WKOKGBUUGTBtwq3KqBX04azB7hMvZGcLlHnutAQ8PI1zOpSoo9qjwaMfuyx97P6FeuQBA/j7DfOiV5t+1wz0eOgWIiIgyybYOHdOivVCwaCciKmzHdomtjOeIB9olHu5s977XNHqkxzsUCVVFbqgOOas19KSbFoIxAxHdSkuCbwrF8fAwwuUAwOt0oMidOQl+T30Q1/5hO7xOR8bHY4aFqG7iN59aUvDzxYf78yQiIio02dahBX2mnYiICBj+OeKRzHbve03DFihyq7CEgCIBUcOCatlZn2WOJZLFejSRngS/vytc7rn+wuVOnIbLFldjZp9wOUmS4Osq1gdKgp9I88VzNXOdiIhovGDRTkRE48JQzxHn4gx3pmvOr/BjX1NnVmsQQiDSVazrfXbOhRDY+l4b7t9ej10DhMutXTQdpd7eZ+W7k+ADLgcc/RTiPeUzF4A730RERPnFop2IiPIiH8VctrusuZztnumag63BtgU648mxbcmE+WMMy8Y/9zXjgR31eDdDuFxlUTJc7kMnVcDdp5W9ZxL8UD7LfM0XH0knAxEREWWHRTsREeXcWBdz2c52/8vuBpT6tJzdVDAsG6HhhstV+HH5khqsPL4sLVxOcySL9e4k+KHKx3zx8ZxGz+4AIiIaT1i0ExFRThVCMTfYGW7DsnE0rON7f90LRZZHfFMhbnSHy6WfVz8SiuOhAcLlzpg9BRuWVuPk6enhch4teV697zi34cjlfPFcdjKMtrG+oURERDRULNqJiMaRQt8hLJRibqAz3GHdxOH2GGwh4HU6EHCp0E0Le+qD+Mp9u3HDucfjimUzslpfWDcznlcHkuFyD2yvx7MDhMttWFyDGVM8vR6TJQk+V3JdA4XLDUeu5otn28mwtyFUUKFxhXBDiYiIaKhYtBMRjRPjYYewUIq5/s5wCwg0h+KwbAGPpqDIrSKSsHC0Mw7dtBGMC3zvr2/gydeb8IWzM3+uti3QqZsIxQwYVu/z6iMJlxvuefWhykX6+nDS6Mf6hlOh3FAiIiIaKhbtRETjwHjZISyU0WL9neEOxQ3EDAsORUJ5wIVIwkrOXhcCDlmCKgOWbeP1hmDa52paNkLxZLHe97x6wrTxzJvDC5dzqsmbB15NGdZ59bEw1DT6QrjhVCg3lIiIiIaKRTsRUYEbTzuE+RwtNlSZznDbtoAiS6gqcsOrKXivNQJLJM92S5IEIQG2BRS5HAjrFu5+/iAWzShGp24iolsQ/YXL7TyM1sjQwuVyeV59tA0ljb5QbjgVyg0lIiKioWLRTkRU4MbTDmG+RosNV98z3G3hBP7ryX3QHDLihg3dtOHoKtiTawQkCVAVBQG3jP1NnXj+rRbMrfD1et2mUBwP7ajH3/b0Hy53+dJqLOwTLidJErzO5M660zH+ivVu2abRAyiYG06FdEOJiIhoKFi0ExEVuPG0Q5jr0WK5OAfd8wy3bQs8vKse+xo74dWUVJEOJM+7m5YNl6pAlgHYQMK2EYwf+1z3H+nE/dvr8Vw/4XIXnFiByxZXZwyX87uSO+uOfn6O4002afR76oMFc8Op0G4oERERZYtFOxFRgRtvO4S5Gi2Wj3PQPW8qdEQNAIANAdgCli0gSxJKvBoggIQloEoSAk4V/3q3Ffdtq8fuuo601wy4HLion3A5RZZQ5FYRcKljcnQh3+Fvg6XRF9INp3zMqiciIhoNkuh7QG8SCoVCKCoqQjAYRCDAO+xEVFhsW+DKe7Z27RA603YIm0I65lf6ce9Vywqq4BhJwdjfOej2ruJqpOegtxxowa+eO4B/vdMGwxZQJMDpUFDq0+BRFQgIHO3UUeTRIAF4rzWa9hoDhcupiowijwq/0zEm4XK2LbBx6yH8aeshNIf0rjWNfvjbnvogrv3DdnidDrjU9BtOMcNCVDfxm08tGbWjHb1uBnXdUCq0KQxERDQ5ZFuHsmgHi3YiKnzHilgr4w5hoaTH58KxmxShXueggdzdpIgbFtojCdy3vQ5/ePk9JCyBEo8KTUmedW+N6NBNO60FHhg4XE5zyCj2aPA5x66RbcuBFtz+xD680djZFbyXvCFR7NGgm/ao/r4U6g2nsR4/R0REBGRfh7I9nohoHMhVy/l4kK/gPSEEIgkLwZgBvSs87uJTqlBT4sbGrXV472gYRxIWEqaNTHezz5g9BRuWVuPkPuFyAOBSFRR7VHi0sf3P6pYDLbjp4dfQEIwDQsChJNcZN2wc7YyjqtidSsUfjfC3Qm1Jz8WseiIiotHCop2IaJwY7PzwRNEa1lOz1IUAXJoMCcfe41DPQdu2QChuIBQzYdp22uNepwMBlwPtMSNjuNz5J07DhsU1aeFyQHJsW7FHzdj6Pdq6RwMGu96HLQDbEhAAJCRH2R0JxTG9xD2q0wYm0w0nIiKifGDRTkQ0jkz0HcItB1rw03++jVDMQChmQJYlOB0KpvqdqZbzbIP3DMtGMGYgHDdh9zkJJoTA1vfaBgyXu/jUKlxyanq4XPfYtmK3Bs1ROEnw3R0KiizB6rr7IHX9DwAEgJhhI6ybsGyM6rSByXLDiYiIKB9YtBMRUUHoPrffGTfgdCjQLQsSkufPD7fHML3EDa+mDDqaK25YCMUMhHUz7bGEaeOfbzbj/u11eL+fcLnLFldjdYZwOalrbFtxgY5ta4smkDBtRPQec+N71MSSSBbubZEEyrzOUZ82MNFvOBEREeULi3YiIhpz3a3dYd1EZZEbkUSyULdEMkjNsmw0BePwOhX4nI6M56AjuolgzEDcsNJevzNu4LFXG7Fp12G0RtJ3mOdV+HH50hqcOSc9XE6RJQRcKgJuNe2xQlLq0QAp2WEgIVmg95xD380wBcoDLs4jJyIiGidYtBMR0ZjrGz7nczowvcSNo51x6KYNSBISpoUTKvz4+uoTUueghRAIRg1se78dbREdRS4Nc6Z5IXdVqk3BOB7cWY+/7WlE3Eg/z76idgo2LKnGwgzhcg5ZRpFbhd/lGBdt3AuqAqgIuNAaScAhA6Z9rHDvSZKA1QsqxsV7IiIiIhbtRERUANqiCRiWgNaj7dzndMCreRE37OT59LiBL593PFbMKYNp2QjFTTz/VjP++K9DqGuNpGZu10zxYuXxU/BqXRDP7z+aMVxu9YIKXLq4GjNK08PlNEeyWPeN0Yz14ZJlCR9bNgPfeXQvbCHgkCVYQvR6/06HDJ9TwZkMfyMiIho3WLQTEdGI5GLmdalHg6pISFg2XPKxs+SSJMGtKYABeFQFAaeK5lAckYSFne+34SdP70c0YSHgUuGXgc64hVfrOrDj/fa0awRcDnz01Cpcsmg6SjKc53ZryXA5tzb2SfDDdcWyGbhv2yG82dQJIQQkAA4ZcCgySjwaEqaNE6sCbI0nIiIaR1i0ExHRsG050JIa5WVYAqoiobbcN+RRXguqAqgt92FfYycqAnKvHW7bttEWSaB2qhdFHgfCejINfuPWOkQTFkq9KsJxC+1RAwkrvQW+qjgZLnfBgvRwOSC5o1/kUeF0ZC7Wc3FTYrTIsoSb1szHTZv2IBgz4FEVuFQFsgx0RE34XZnzAIiIiKhwSUL0Pe02+YRCIRQVFSEYDCIQ4O4DEVE2utPew7qJEo8GTZGRsGy0Rw34nApuW7twSIX7sdezUOxRockSYqaNjqgBjybjxvPnYtGMEgDA/qYwvvXIazBtoFM3UyPOenLIEq76wCxsWFKdFiDXnQRf5FahDpAEn6ubEqOt17q7jg2Mh3UTERFNJtnWodxpJyKaQEZrV7hn2ntFwJXaGXfJCioCMppCOu5+/iCWz56S9fVXzCnDbWsX4r+fPYADzWEkbBuqJGH2VC+uWFaTKtibgnH84V/voSViZHwdr6ag2KMikjAxp9zbq2CXJQkBt4qAyzHo2Lb+bkrsa+zEzZv2DPmmxGjiXHQiIqKJg0U7EdEEMZq7wn3T3nuSJAnFHhUHm8PY2xDKaja3EAKRhIWZZV7c+tEFOHAkgmA80SsNfv+RTty3rS5juJyE5Jn1Eo8GzSEjbtrQZBlFruTZdUWWUORWEXCpWRWu+bgpMdo4F52IiGhiYNFORDQBjPaucKa0956cioygLdAWTZ+J3pNp2eiMm+iMmzDt5Hl0WZIwt8IHALCFwNZ323D/9jrsrgumfb8EoMSjotijwiEn1yIg0Bk3MHuqD/Mq/Sh2qzjUFsV7rdGsd5xzfVOCiIiIaLhYtBMRjXNjsSvcX9p7N92yocoSSjOktANA3LAQihmIJCxkilZJmDb+ue8I7t9Rj/dbo2mPVxa5sHx2KV55pxVxw4ZpA7IkkLCSBbtHU3Ddqtk43B7Ff/7lnSF3H+TqpgQRERHRSLFoJyIqMEM9lz4Wu8IDpb0LIdARNTC/0t9rtJgQAmHdRChuQjesjK/bGTfw2KuNeHjXYbRF0gvi+ZV+XL6kBh+YUwZFlnDmnDJs3FqHutYIOoWAKsuYV+nHDeccDwDD7j4Y6U2JfBhPKfZERESUOyzaiYgKyHDOpY/FrrAsS7huVS1u3rQHTSEdxR4VTkWGbiXT3n1OJTVazLYFQnEDodixFvi+moJxPLizHn/b04i40fs5EoAVtVOwYUkNTpoe6HWDYNGMEpxSU4xDrTGYto3KInfqRsGV92wddvfBcG5K5NN4TbEnIiKikWPRTkRUIIZ7Ln2sdoW70967i8lg12ix+ZV+XLeqFktnlaIlrCMcT85Vz+Stpk7cvz1zuJyqSFi9oAKXLq7GjFJPxu93awpKPBrmlPt7fX1PfXBE3QdDuSmRb+M5xZ6IiIhGjkU7EVEBGMm59LHcFc40Wqx2qheduom6tvSz6MCxcLn7ttXh1fr0cLmAy4FLTp2Ojy6qQkk/Nxq8zuSMdZeafpMCyE33wWA3JUajUB6tvAK23hMRERUuFu1ERAVgJOfSx3pXWJYlnDQ9gE7dRChmoCkUz/i8wcLlqopduGxxNVYvqMhYjEuSBF9Xsa45Bp6xnovuA9sW8LtUXH3mLHREDJR4VEzxOUe1oB2NvAK23hMRERU2Fu1ERAVgpDvDY7UrbFo2QnETnXEDVt/+9i6hmIHHXmvApl0NWYXL9SVLEvyuZLHu6Ofz6Wsk3Qe2LbBx6yH8eeuh5A0IAWgOOVXIjuYOdM/fCwGBeMKGadtwyDJcmjzivAK23hMRERU+Fu1ERAUgFzvDmVrV87UrPNjINgBoDMbw0I7D+NvrmcPlzqidgsszhMt1U2QJRW4VfpeasZgfSDbdB9eeNTvts3rlnVbc/sQ+vNHYCVsIKJIEp0OGU5UzFrL5bivv/r3oiBkIxgzopgUhAEkCnA4FRW512HkFYzEqkIiIiIaORTsRUQHI1bl0WZZyNtatLyEEIgkrWTz2M7INGHm4nKrICLhVBFyOjMV8tgbqPjjr+DL85oXe89un+DQc6dTRHkkAQkBTJAAS4qaNo50JVBW7ENatVCH7yjuteW8rX1AVwBSfhr0NIUgAHIoMSQaEAGIJE9GEiQVVgWHlFYzFqEAiIiIaOhbtREQFYKzPpQ/EtgU64yaCMaPfkW25CJdTFRnFHhU+58iK9Z4ydR8EYwl865HXe7WE65aFN5s6Uy3+qiJD7lqDKgOGLdAS1jEt4MLB5jA2bj2E/7P5ndFtK+/+SESPP2ducsjKWIwKJCIioqFj0U5EVCAKIa28J8OyEYoZ6BxgZFvCtPGPfUfwwPZ6vJ8hLb5nuJzmkHHgSAQHmsMocmmYM80LWZLgVBWUeFR4tPz8J6ln94Fti4zz22FKqTb/ZN0u0F0lS5IEhwzopg0hAMMS+PPWQwjrJqYFnNANgUjChEOWMS2g4UgokbO28r0NIbSGE6gscnW1x9up9ni3qiDgVtEaTgxrN3ysRgUSERHR0LBoJyIqINmcS8/3Oeq4kWyBj+hmv8/pDpd7eOdhtEeNtMdPrPRjw9IafKA2GS6361A7Nm6tQ11rBEbXzYjjpnrxhVVzcPa88pytfTD9tYQnOwgkyDJgWwK2AHp+pBK6WtK7jgU0heJwOhS83xrLeM48V23l3bvh5X4nSjwa4kaPIDpVhhBAc1gf1m74WI4KJCIiouyxaCciGqZ8Fc8DnUvP13iubM+rNwZjeHDHYTyxpxFxMz1cbsWc7nC5Y+vfdagdP3l6P6IJCwGXimKHDEsIvHM0ilse24vbHPKodRH01xLukGVIUvI9SAAsW0CRBaSu3XaBZFEeS1iYXuJGXVsUwagBgWRgXvc587hhQTcseJyOjIX0UH9neu2GqwrcmgLg2K543LSGvRteyEcyiOj/b+/eo+Oq73vvf/ae2XOTNCP5opslg/ElGGOMscFg3PoAziEkIeESuyTOitOkpfVJAoTQFGiBJCWQ0lWa0qcxIU0D50loMJxjQvo0OA5dcS44xnYwMcbBN4Ily5Kv0mikue/9/DHWYFkj6zajGUnv11peC88ejbbkbeHP7N/v8wWA9xDaAWAYijHbuhDjudK2o85YUuFoqt/96pL0+9aw1m9r1i/29S2X87hNXX9RjT62qEGNZ5XL2Y6jZ19rUncirZoKb6ZI7fQdXb/lGvWG8v6WhPs8prxul6KJlEwzE9VTaUeZbO8olXZkmoZCfrduu7xRD/9/e2Q7jiy3mQ32hiEZLimZshVLplXpt3p97uFcM4W+G15qWzIAAEBfhHYAGKJizLbO93iuRMpWRzSpSDzV78g223G09eBJPbe9Sb/rr1xu4TR99NL+y+UOHuvS4ZPdmlzmkeXuvW+6GA3l/YVgQ4amlHt06GRKLkOaWu7NjlhL25m70hfWVui+G+aqzOtW9lv23tb3934v6exv6XCvmdG4Gz6aowIBAMDQEdoBYAiKNdt6uOO5zl6OPWNKQJ3xlKKJ/pfAJ1K2Nr3Vpud3NOtQjnK5aZV+fWxRg66fVyOf1bfATMq0r4cClg6d7Fbayez1zmW0G8rPFYIj8bSqK7yaWuHViUhCAY9bAY9b1UGvPn7FdH3iiukyTUOb9x6T33IpmnSUtB25zfeK3FO2I5dpyO9xqT2a2es/0mtmNO6GF3JUIAAAGBlCOwAMQbFmWw9nPFfPcuz9bZ1KnF7q3TipTJ+4olELp1f1eY1wNKmX3mjRhtcHVy6X8zwslyr9lsq8mf+9TC7zllxD+UAheKC7zpMCHpV5XSr3uXI0umdmzMtR9mvKxzXD3XAAACYuQjsADEF/4dmRo1jCViKdVjSZ1rHOmHY1K28Ba6jjuV7df1z3/d/fqTOeUoXXUpnXUDLt6OCxiB7ftFd3v39ONrgPp1zubAGPW5UBq8+d91JtKB8oBJ/rDZf3vqawqsu9ip7+ngU8Lvncpto6E72+pnzNQ+duOAAAExOhHQCGIFd4jsRTOtYZVzyVlm07ciTd8dxOeV2mTMPIS0ndUMJvVyylb76yV+FYSlPKPdmiNK87s2/7eCShZ19rktdy6YXtQy+X62EYhsq8mRFn/S1/L+WG8uGGYNM09Mezp2jbH07qZFci0zhvSJbLJY/bUFXA0+trYh46AAAYidxv+wMAcuoJz6e6k3IcR5F4SodPRRVLprP7mh1HisRS6ogmFfC6VOZ1ZwvHXt1/fFiftyf8lnszjevRZOYNgmgyrdZwXGUeU2uuOk+H26P65b7j+sOxLgV9VjawZzmZ8Wa/a2rX5599XT/f2zuwB31uferK8/Qff75EX3z/nJyB3TQMhfyWGqv8qq7w9RvYe/QsR59bV6HueEpHI3F1x1OaW1dRkNK+Qnt1/3H9YOsheVymfG6XTMOQI0PxVFrxlK3VS6b3+prOvmbO1POGy8zqcuahAwCAnLjTDgBD0PvOcUxd8bTSti2Xy1DadrJ7mz0uQ2lbOhFJ6PwpAdUGvSMuqcu1F9ttSDOnlum2yxt1wdRyJdO2OmIJJW1HQdd7n8N2HHXGUjrVnVAi3bctfjDlci7TUNBnKei3+t3Tfq5zHw97ss8slZt++g2NWNJWyrblMgy1R5P6xb7j+uyyC7JfWymvNgAAAKWP0A4AQ9QTnh/b+LZ2NbdLhiHHkTwulxJKy21mlsXLdBRPpRVL2PJ7XHkpqesJvzvePaXm9qj8bpdm1ZRlPt9pIZ9HlpnZw+42pfZoUu3RpNJnr4GXdFFdUH9yeaOWzpzcbxC3XJlytaDP3adIbSjGw57sXKVyfo9LUuaNDsM0cv4ZMw8dAAAMF6EdAIZh6awpujNt64s/3KmQ35LlMpVMp3W4PZZdkG4YkmNLKduW5BrxeDPbdtQZTykcTWpyuUeTy3PvgZ5VU6bqoE/7jkaUSNnKNYW90m/pqx+9SPOnVeb+XI6jd493K+k4qg/6NK3SP6LAPl6MpFRuvKw2AAAAo6uoe9p/8Ytf6MYbb1R9fb0Mw9CLL77Y67jjOHrwwQdVV1cnv9+vFStWaN++fb2ec/LkSa1evVrBYFCVlZX67Gc/q0gkMopfBYCJakqZVwGPSx63Kb/HJcvlygT108d7lsq7zcyP2uEWjiXTtk5E4jp0slsnInEl03a/z91zJKy/+8892t0SzowiO+OYoUzBXHWFRw98eG6/gX334Q49+KPdeuBHb+qBDW/qL7+/Q2u+99qw9+OPJ2eWyuUy0J9xz2qD5XOman5DiMAOAAAGVNTQ3tXVpQULFuhf//Vfcx5/7LHH9MQTT+jJJ5/U1q1bVVZWpuuvv16xWCz7nNWrV2v37t3atGmT/vM//1O/+MUvdPvtt4/WlwBgAju7YMxnmfK6TaVsR7ZjK2078rpd8nnMYRWOdSdSau2IqelktzqiSdlOrnvmmbvirx44rrue26nPPfu6Nu891ies+yxTk8sszZ8W0l9/4MKcc9oDHrcOnejWP27aq71tnSrzulVd4c1Lkd54QakcAAAYbYZz9r86isQwDG3YsEE33XSTpMw/furr6/WlL31J99xzjySpo6NDNTU1evrpp3Xbbbdpz549uuiii7Rt2zYtXrxYkvTyyy/rgx/8oJqbm1VfXz+ozx0OhxUKhdTR0aFgkH9oARi8V/cf1/0bdikST6syYCmZstXSEVUq7chlGppW5ZflMrOFYwO1pZ+5BP5cd9QlKZGy9dO32vT89iY1nYr2OZ4pl5ummVMqFE2lFPJ5+ux/l96bse5xmVrzvde050hYtUFfn7FyreG45tZV6Jk/vWJC3yE++8/87FK5sdiIDwAARt9gc2jJ7ml/55131NraqhUrVmQfC4VCWrJkibZs2aLbbrtNW7ZsUWVlZTawS9KKFStkmqa2bt2qm2++Oedrx+NxxePx7O/D4XDhvhAA49rZBWNJ21HQ51bakVyGoe5EWpZpD1g4lkjZCseSisRS/d5R79ERTeqlN1r04uuHdao72ef4YMrlJKnMmwnrPSPbdjV39ClZ62EYRl6K9MYDSuUAAMBoKtnQ3traKkmqqanp9XhNTU32WGtrq6qrq3sdd7vdmjRpUvY5uTz66KP66le/muczBjBR5SoYm1tboT2tnQMWjkUTaXVEk+pOpAb8PC3tUb2wo1kvv9mqWKr3XXhD0tWzpmjV4gZdPO3cgbrc61bojLDeYyQlaxMNpXIAAGC0lGxoL6T77rtPd999d/b34XBYjY2NRTwjAGNdrnFm/d2NdhxHkXhKHdGkEqlzL4GXMuVy67c365f7junsqW0et6nr59Vo5aIGNVQF+n0NwzAyYd1vyePOHcrPLFnzmX1ntQ+3SG+8Gg8j7AAAQOkr2dBeW1srSWpra1NdXV328ba2Nl166aXZ5xw9erTXx6VSKZ08eTL78bl4vV55vd78nzQAnEPadhSOJtUZS50eA9c/23H0m4Mn9Ny2Zu063NHneMhv6aZL6/XRS+tVeY4QbRqGKnyZsO7u5w56j56StT1HOlUbNPvsaW/vTmpuXQUlawAAAKOoZEP7jBkzVFtbq1deeSUb0sPhsLZu3aq1a9dKkq666iq1t7drx44dWrRokSTpv//7v2XbtpYsWVKsUweAXhIpWx3RpCLxVJ/G8VzPHahcbuXiBl1/UY28Vt+74T1cpqGQ31LQZw16ybZpGlq7fKbu37BLreF4zpK1tctnsgQcAABgFBU1tEciEe3fvz/7+3feeUc7d+7UpEmTNH36dN111116+OGHNXv2bM2YMUMPPPCA6uvrsw3zc+fO1Qc+8AH9+Z//uZ588kklk0l9/vOf12233Tbo5ngAKJSueErhWFLRRHrA5w5ULjevPqhViwcul7NcpkIBSxVed58yucGgZA0AAKC0FHXk289//nNdc801fR5fs2aNnn76aTmOo4ceekhPPfWU2tvbtWzZMn3rW9/SnDlzss89efKkPv/5z+vHP/6xTNPUrbfeqieeeELl5eWDPg9GvgHIF9t21BnLhPWBRrZJA5fLLZs9RSsXDVwu53Gbqgx4VO7Nz3uxtu1QsgYAAFBAg82hJTOnvZgI7QBGaigj22zH0abdR/Vfb7bozZawzn66x23qA/NqtXJRg6ZV+c/5Wn6PS5V+j/ye/pfKAwAAoPSM+TntADAWdCdSCkdTgxrZZjuOfrD1XT2//bAi8b7Pr/RbumlhvT6y4NzlclJmbFvQb8l3jn3tAAAAGPsI7QAwRENdAt9TLvf//uZdHeuM9zluGlLQ59a9N7xPV8yY3O/rDGZsGwAAAMYXQjsADNJQlsBLp8vldrboxZ25y+V8lqlJAY8CHlMnupJ6fsdhLT5/ksyzCuRMw1DQbynocw84tg0AAADjC6EdwIQ3UOladyKljujgWuAl6fAZ5XLxVN878eVel6oCHvnPWNpe4bPUdKJL+9u6NKc2U6TpNk0F/e4hjW0DAADA+EJoBzChvbr/eHa8WTLtyHIZmlldrr/44ws0f1rloJfAS9KeI2E9t71Jv9p3XPZZN+LdpiGXaaimwptzH7rHZajTcdQRS4x4bBsAAADGD0I7gAnr1f3Hdf+GXYrEU6oKeORxmYqn0tp9OKy//j+/093vn6OF06vO+Rq242jLgRNav71Zuw539Dke8lu66dJ6XVwf0j9s/H2/ITyRdmSZpmZMLlfjpEBevj4AAACMfYR2ABOSbTtat/mAIvGUaoM+2Y6UdhyZhqHJ5ZaORxJ69rUmLWis7LPHXHqvXO757U1qOhXtc7yhyq+Vixr0Py+qkddyyXYcNU4u08FjEU0p98jQe69pGFJXPKWL6oNafP653yQAJoqBtq0AADBRENoBTEi7W8La39apoM9SMu3IOaNYzpCRc4+5JHV0J/XSG/2Xy11cH9SqxY1aOmtyr7BvGoY+cUWjHt+0V8cjCVX4LPncplKOo3B3ShU+t9Yun0koAdT/tpW1y2dq6awpxT49AABGFaEdwIQTS6Z18HhEsZStMq96BfYeZ+4xl85dLmdIWjZ7ilYtbtC8+lC/n3fh9Crd/f45Wr+9WYdOdCmaTMsyDc2tqyCMAKfl2raSSNvac6RT92/YpUduns/fFQDAhEJoBzAhOI6jznhKnbGU4sm0vC6XLNNQMu3I686x/D3tyDIMnYwk9ZWXduuX+47r7GjvdZv6wLxafWxRg6ZV+c/5+Q3DUJnXpRsXTNPNCxtY9gvkcPa2lZ4OCJ/pUm3QVGs4rnWbD+jKCybzdwYAMGEQ2gGMaQPte02kbHXGkorEU0qfUek+q6as3z3mtmPrRCQuwzD09xt/3+dzVvot3bSwXh9dME2hgHXO8zMMQxU+t0J+S9YZM9bnN/R/Rx6YqHa3hHXgaERVAU+f0kbDMFQZsHTgaES7W8L8HQIATBiEdgBj1rn2vV46vfKcs9Vz7TF3m1J7d0rt0USfkW1S33K5czENQ0G/pZDfkos7gsCgnOxOKJl25DnjDa4zeV2mOmxHJ7sTo3xmAAAUD6EdwJjU77i2lrD+6oU3BjWurWeP+f/e8q72H42oO5HuswRekubVB/UnOcrlcnGZhkJ+S0GfxfJdYIgmBTyyXIYSaVs+s+8bY/G0Lcs0NCngKcLZAQBQHIR2AGPO2ftendOPmaahyWUDj2vrcbg9ql/sO67ft3bmLJf7o9lTtHKAcrkelstU0G8p6HP3O4sdwLnNqw9qZnW59hzpVG3Q7PV3yXEctXcnNbeuQvPqg0U8SwAARhehHZigxvIM5J59ryG/pZTtyLYHN66tx1stYa3f3jTicjlJ8rhNVQY8Kvfy4xQYKdM0tHb5TN2/YZdaw3FVBix5XabiaVvt3UmVe12MRgQATDj8KxOYgMbyDOS07ejQqW7FkrYCHlevwN7j7HFtkmQ7jrYcOKH125u063C4z8dU+i3dvHCaPrKgfsByOUnyWi5V+i2VEdaBvFo6a4oeuXl+9mdUh+0wGhEAMKHxr01gghmrM5BjybTC0aS6Emm5ZMhtasBxbSGfR/FkWpv2tGn99mY1n4r2ee5QyuUkye9xqdLvkd8z8HMBDM/SWVN05QWTx+xqIAAA8onQDkwgY20Gsm33zFZPKnHGnvNzjWtz5KgzltT0SQFtOXhc9/7fFrVHk31ee/60oFYtbtRVMwcul5OkgMetyoAl3yCCPYCRM02DsW4AAIjQDkwoY2UGciJlKxxLKhJLyXb6Ln/PNa7N4zKUSDs61ZVQ0rb1ZktYbzR39Pq4nnK5VYsbddEgi6zKvW6FApa8bsI6AAAARh+hHZhASn0GcjSRVkc0qe5ESlJmH/r+ti51xBIK+TyaVVOWvSveM67t2dea1HSiS6dSacUStpI59rhbLkMfnF+XKZerHLhczjAMlXkzy+A97tzfKwAAAGA0ENqBCaQUZyA7TmYJfEd3Usn0e0vgXz90KhvIk6eLqBonl+kTVzRm568vaKxUJJ7S/97yro4e6/tGg2mcbnf3W/rj2VMGDOyGYajC51bIb8nq540NAAAAYDQR2oEJpJRmIKfStsKxzH719Fl3x18/dEqPb9qr7kRaQZ+loMtQMu3o4LGIHt+0V1+4dpbawnE9vyN3uZzlMlQV8Jyema4B57abZ4R1N2EdAAAAJYTQDkwgpTAD+cwWeCfHfnXbcfTsa03qTqR7lcx53YaqApZaOmL62xd3K5VjGbzXbWpymUdlHlevNyT6m9vuMo3MmwJ+S64SKN4DAAAAzkZoByaYYsxAdhxHXaf3q8eT6XM+d39bl5pOdCnos7KBPZGydSqaUDia0tlR3ZA0b1pQ7x7vUk3Ql/NO+tlz292mqZDfUoXPXRIt+QAAAEB/CO3ABDRaM5DTdmb8WjiaUsq2B/4ASR2xhJK2o6DLUDSZ1qnuhCLxvkE/Wy53WYO64mk9+KNdA85tn1Tm1eRy7+ll8/n5Wm3bYZY0AAAACobQDkxQhZyBnEjZ6ogmFYmnci6BP5cKjyXbdtR0Kqp4qm/QNw3Jb7n01Y9crMvOq5SUWVJ/7rntKV1YW65r3zdVrjzuWX91//HsioVk2pHlMjSzurxgKxZGE29GAAAAlAZCO4C86YqnFI4lFU3kXgJ/rhFu8WRaP32rTeu3N6sjlurzsZlyOUuJlK2Z1RW6dPp7bzj0N7c9aWcCe8jv1heunZ33wH7/hl2KxFOqCnjkcZlKpG3tOdKp+zfs0iM3zx+zwX08vxkBAAAw1hDaAYzIYJfA9zfC7SML6nTwWJde3Nmijmiyz8d53aYmBTKt7pF4SmVetz5xRWOfvetnzm1vPtmt7kRmHv28+mDew6ZtO1q3+YAi8ZRqg77sUnuf6VJt0FRrOK51mw/oygsmj7m70+P5zQgAAICxiNAOYFhiybTCsaS64rlb4M+Ua4RbdyKtNw93aMe7p/o83zSki6eFlEjZOhmJK5a2ZdmOLpha3mtO+9mWzpqiGy6u04FjXQVd1r27JawDRyOqCnj67I03DEOVAUsHjka0uyVcsC0IhTCe34wAAAAYqwjtAAbNcRxF4imFY6kBW+B7nD3CLZa01RqO5yyX87pN3XBxrW5d1KBplf5zLqc/U5k3M2PdZ7kkqeBB+WR3Qsl05k5+Ll6XqQ7b0cnuREHPI9/G65sRAAAAYxmhHcCAUmlb4VhKnbGk0jnmo5/L/rYuHToekds01HQqqliy7xJ6w5BunF+vP112vkJ+K/u4aRi95qqfrdzrVihgyet2DemcRmpSwCPLZSiRtuUz+37ueNqWZRqaFPCM6nmN1Hh9MwIAAGAsI7QD6Fc0kVkC350YeAl8LvFkWhvfOqIT3UnlyvqWy1Cl31LStnX17Mm9Ant/DMNQmdelSr9HHnf+iuWGYl59UDOry7XnSKdqg2avu9KO46i9O6m5dRWaVx8syvkN13h9MwIAAGAsI7QD6MW2HXXGUwpHk0qmBzdb/Wzt3Qn9aGdLv+VyfstUVcCjMo9L8bQjI5FSyHfuIGgYhsq9blUGLFl5bIEfDtM0tHb5TN2/YZdaw3FVBix5XabiaVvt3UmVe11au3zmmNv3PV7fjAAAABjLCO0AJEnJtK1wNKnOWEr2MO6qS1LzqW69sOOwNu5uzTljvdzrUlXAI//pveeZGepJXTC1XLNqynK+pmEYKvO41NIe06GT3SUzM3zprCl65Ob52dFoHacb8efWVYzZ0Wjj9c0IAACAsYzQDkxwsWRaHdGkuuJ9Z6MP1u6WDj23rVm/3n9cZ8d9n9vUovOrtL+tU4m0I8MwZDuOEulMYA94XDlHuBmGoaDPrbdawnrqlwdLcmb40llTdOUFk7W7JVzQtvrRNB7fjAAAABjLDGc4G1XHmXA4rFAopI6ODgWDLPvE+NfTAt8RTSqR4474YKRtR68eOKH125u0uyXc53hVwNJNC6fpIwvqFfJbvee0O44sIzOn/ewRbqZhKOi3FPJb2nrwRM6Z4adO3/VlZnjh2LYzrt6MAAAAKDWDzaHcaQcmkFTaVmcspfAwWuB7ZMrl2vTCjmY1n4r2Od5Y5deqxY16/0U1vYriFk6v0oLGyn5HuLlMQyG/paDPkmkazAwvMtM0GOsGAABQAgjtwAQQS6YVjibVNcwWeClTLvfizhb9qJ9yuUsaQlq1uCETonPMUpdyj3Bzm2YmrPvdvYrPmBkOAAAAENqBcctx3muBH+4SeClTLvf8jmZt3N3W53VMQ/qj2VO1anGD5tYNbWuJ5TIVCliq8Lr7hHKJmeEAAACARGgHxp2eFvhIPDXsJfCS9ObhDq3f3n+53AcurtXHFjWovtI/pNe1XKYqA5YqfOeeyT5aM8PZuw0AAIBSRmgHxoloItMC350Yfgt8T7ncc9ua9NaR3OVyNy+cphtPl8sNhcdtqjLgUbl3cD92RmNm+Kv7j2db0kutmR4AAACQCO3AmGbb7y2BT6aHvwQ+lkxr4+5Mudzh9r7lctMnBbRyUUOfcrnB8FouVQUsBTxD+3FT6Jnhr+4/nrOZfs+RTt2/YRfN9AAAACgJhHYgT0ZzmXUiZSscSyoSS8kewdTGfJTL9cdnuVQV8Mjv6bu0fbCGMjN8KN9/mukBAAAwVhDagTwYrWXW3YnMbPVoIj2i12k62a0XdjRr41v5LZeTJL8nE9Z91vDD+pmWzpqiKy+YfM5APtTvP830AAAAGCsI7cAIFXqZddp2FDk9W30kS+ClTLncc9ub9Or+EznL5W6YX6dbL5s25HI5KT931vtzrpnhw/n+F6OZnsI7AAAADAehHRiBQi6zjqfSCkdTisRTw56tLmVC/68PHNf6bc3nLJf7yIJ6BYdYLicVNqwPZLjf/9Fqpu9B4R0AAACGi9AOjEC+l1k7jqOuRFrhaFKx5MiWwA+mXG7V4gatmDv0cjmpuGG9x3C//6PRTN+DwjsAAACMBKEdGIF8LbNO2446Y0mFoyml7JEtgT/VndCPXm/RizsPKxzrO/5tQUNIK4dZLieVRljvMdzvf6Gb6XtQeAcAAICRIrQDIzDSZdaxZFrhWFJd8fSIlsBLA5fL/fHsqVp1eYMurB3e3eNSCus9RvL9H0oz/XBReAcAAICRIrQDIzCcZdY9S+A7oknFR7gEXhpcudzHFk1TXWjo5XLS8Oesj4aRLnMfTDP9SBSj8A4AAADjy9A3so6idDqtBx54QDNmzJDf79fMmTP1d3/3d73uSDqOowcffFB1dXXy+/1asWKF9u3bV8SzxkTSs8y63OtSaziuaDIt23YUTabVGo73WmadSts61ZVQ08mojoZjIwrsadvRL/Yd0+effV13/HCnfn1WYK8KWPrssvP1w9uv1BeunTWswO61XKoN+TSt0l+SgV0a2vf/XK8xvyGk5XOman5DKK/L1M9cCZBLvgvvAAAAMP6U5r/ET/v7v/97rVu3Ts8884zmzZun7du360//9E8VCoV0xx13SJIee+wxPfHEE3rmmWc0Y8YMPfDAA7r++uv11ltvyefzFfkrwEQw0DLry86r0tFwTF2JkS+BH0y53MpFDXr/RcMrl5NK+856LqOxzH24RrPwDgAAAOOT4Yw0RRTQhz/8YdXU1Oi73/1u9rFbb71Vfr9f3//+9+U4jurr6/WlL31J99xzjySpo6NDNTU1evrpp3XbbbcN6vOEw2GFQiF1dHQoGOQfzxieM+dwV/otnTcpoM54asSz1SWpvTuhF3e26Ec7W9QRTfY5vqAhpFWLG7XkgknDKpeTMnvWK4cZ1kthBnkpnEMu77XHp3MW3tEeDwAAMDENNoeW9K20pUuX6qmnntLevXs1Z84cvfHGG/rVr36lxx9/XJL0zjvvqLW1VStWrMh+TCgU0pIlS7Rly5Z+Q3s8Hlc8Hs/+PhzuO7saGCrTNDSntlzhaEpd8VRe9ikXulxOkvwelyr9wy+YK5UZ5D3L3EtNKa8EAAAAQOkr6dB+7733KhwO68ILL5TL5VI6ndbXv/51rV69WpLU2toqSaqpqen1cTU1NdljuTz66KP66le/WrgTx4TiOI4i8ZTCsVReiuWkgcvlPji/TreOoFxOkgIetyoDlnzW8NvgmUE+OIUuvAMAAMD4VdKhff369frBD36gZ599VvPmzdPOnTt11113qb6+XmvWrBn269533326++67s78Ph8NqbGzMxyljAkmlbXXGUgrHkkrbI99lkrYd/frAca3f1qy3jvRd/VEVsHTzwmn6yIJ6Bf3WsD9PmTcT1r3ukY1uYwb50JTqSgAAAACUtpIO7X/1V3+le++9N7vMff78+Xr33Xf16KOPas2aNaqtrZUktbW1qa6uLvtxbW1tuvTSS/t9Xa/XK6/XW9Bzx/gVS6YVjibzUizX83obd7fq+R3NammP9Tl+3qSAVi5u0Iq5wy+Xk6Ryr1uVAc+IXuNMzCAHAAAACq+kQ3t3d7dMs3fAcLlcsu3M3t4ZM2aotrZWr7zySjakh8Nhbd26VWvXrh3t08U45jiOOuMphaPJPnvLh+tUd0I/er1FL+48rHAs1ef4pY2ZcrkrZgy/XE6Syn1uVfrzF9Z7MIMcAAAAKLySDu033nijvv71r2v69OmaN2+eXn/9dT3++OP6zGc+IylzN++uu+7Sww8/rNmzZ2dHvtXX1+umm24q7sljXEilbYVjKXXmaQm8lCmXe35HszbublUy3fs1TUNaPmeqVi4eWbmcYRin76xbsvoJ1SN15gxyn9l3qf1oziAv1eZ4AAAAYKRKOrT/y7/8ix544AH9r//1v3T06FHV19frL/7iL/Tggw9mn/PlL39ZXV1duv3229Xe3q5ly5bp5ZdfZkY7RiSWTKsjmlRXvO8d8OFwHEdvHg5r/fYmvXogR7mcZeqDF4+8XG40wnqPUplBXirt9QAAAEAhlPSc9tHCnHZIhVkCn7Yd/Xr/ca3f3qS3jnT2OV4VsHTLZdN04yUjK5czDENBn1shvyV3gcP6mYo9g7y/9vpTzEAHAABAiRsXc9qB0ZA83QKfzyXwgymXW7W4QdeNsFzONAwF/ZZCfkuuIiwHL+YMctrrAQAAMBEQ2jFhRRNphWP5WwIvjV65nMs0FPJbCvqsogfSYs0gp70eAAAAEwGhHRNKIZbAS9Khk916oZ9yOcOQ5k8L6UMX1+m6i6pHFNbdpqmQ31KFz130sH6mYswgp70eAAAAEwGhHRNCMm0rHE0qEk/lbQn8QOVyHpepyoCldNpW08luffdXB/XTPW36xBWNWji9akify3KZCgUsVXjdfe4qT1Sl1F4PAAAAFAqhHeNaIZbA95TLPbe9SXtylMtNKvPoyhmT9PqhU4qlbAV9liyXoWTa0cFjET2+aa/ufv+cQQV363Twr/ANv6RuvCqV9noAAACgkAjtGHcKtQQ+mkxr45uZcrkjHf2Xy11zYbUe+NFuxVK2ppR7ZCgTJr1uQ1PKPToeSejZ15q0oLGy36XyXsulSr+lMi9/RftjmobWLp+p+zfsUms4nrO9fu3ymSW1jQAAAAAYKhIBxo1CLIGXpJNdCf1o52H9aGfLoMrl9rZG1HSiS0GflQ3sPQwZqvBZajrRpf1tXZpTW97ruM9yqSrgkd/Td7k3+ipmez0AAAAwGgjtGPMKsQReOne5nGlIy+dM1arFjXpfbUWvYx2xhJK2o6Ar9x1ej8tQp+OoI/ZeQVrA41ZlwJLPIqwPVbHa6wEAAIDRQGjHmNSzBL6jO6lkOn9L4HvK5Z47XS53Np9l6oPz6/SxyxpUG/LlfI2QzyPLzOxh97r7BsdE2pFlGAr5PCr3uhUKWPK6CesjUYz2egAAAGA0ENoxpvQsge+MpWQ7+VsCP5hyuVsWTtOHL6lT0H/uUrhZNWVqnFymg8civfa0S5IjR52xpObUVOh/vG+qfCyDBwAAAHAOhHaMCdFEWh3RpLoT+V0CH0um9fIgyuWum1sjjzv3PPCzmYahT1zRqMc37dXxSEIVPksel6FE2lEkllLQ59ad180msAMAAAAYEKEdJcu232uBz+cSeGno5XJDtXB6le5+/xw9+1qTmk50qcvJ7GWfNy1IQRoAAACAQSO0o+QUagm8lCmXe357s3761tDK5YZj0XmTtHxOtZpPRdURS1KQBgAAAGDICO0oGd2JlMLRVN6XwDuOo12HO7R+e/Owy+WGwjQMhfyWgn5LLtPQlArviF8TAAAAwMREaEdR2bajzlhK4Vj+l8CnbUe/2n9cz21r0u9b+y+Xu3FBnSp85y6XGwyXeTqs+yzupgMAAADIC0I7iiKRshWOJRUpwBL46OlyuRf6K5ebHNCqxY267sLqQZfLnQthHQAAAEChENoxqrrimbvq0UQ67699siuhF3ce1kv9lMstnF6pVYsbdMX5k2QMo1zubG7TPL0M3p2X1wMAAACAsxHaUXBpOzPqrBBL4CXp0IluPb/j3OVyf3J5o+bUjLxcTjod1gOWgj7COgAAAIDCIrSjYOKptMLRlCLxlJw8L4F3HEe/O9yh9duateVg7nK5D82v062LGlQbHHm5nCRZrkxYr/AS1gEAAACMDkI78spxHHUl0gpHk4ol878EPm07+uW+41q/PXe53OQyj27OY7mclAnrlQErb68HAAAAAINFaEdepG1HnbGkwtGUUnb+l8CPdrmcJHncpioDHpV7x/ZfE9t2tLslrJPdCWbFAwAAAGPM2E4jKLpYMq1wLKmueDrvS+Cl0S+XkySv5VJVwFLAU/i/HoUO1K/uP651mw/owNGIkmlHlsvQzOpyrV0+U0tnTcnb5wEAAABQGIR2DFnPEviOaFLxAiyBlzLlcut3NGnTW205y+X+x/uqtWpxQ97K5STJ73Gp0u+R3+PK22ueS6ED9av7j+v+DbsUiadUFfDI4zKVSNvac6RT92/YpUdunk9wBwAAAEocoR2Dlkrb6oyl1BkrzBL4YpTLSVLA41ZlwJLPGp2wLhU+UNu2o3WbDygST6k26MuuQvCZLtUGTbWG41q3+YCuvGAyS+UBAACAEkZox4BiyUyxXFeiMEvge8rlntvepLf7KZe75bJp+vAl+SuXk6Ryr1uhgCWve/TCujQ6gXp3S1gHjkZUFfD02TZgGIYqA5YOHI1od0tY8xtCI/6aAAAAABQGoR05OY6jSDyljmhSiVT+76pLmXK5n+xq1f/5be5yufN7yuXmVsty5adczjAMlXkzy+DzVVg3VD2ButJvKZa0lbJtuU1TPsvMW6A+2Z1QMu3I08/3zesy1WE7OtmdGMmXAgAAAKDACO3oJZW2FY6l1BlLKm3n/666lCmX2/D6Yb30Ros6+ymX+5PFjbr8/Kq8lcsZhqFyb2YZfL7eABiuk90JdcUznQCJtC3HkQxD8rpNTa3wKWC5RhyoJwU8slyGEmlbPrPvSoJ42pZlGpoU8IzkSwEAAABQYIR2SJKiiZ4W+L4hOl/ePdGl53c0j2q5nGkYqvC5FfJbchc5rPdoOtmtSCIlOY7cLlOGITmSoklbh09FNaXCM+JAPa8+qJnV5dpzpFO1QbPXmx+O46i9O6m5dRWaVx/Mw1cEAAAAoFAI7ROYbTuKJFIKF3AJ/EDlcn7LpQ/Or817uZzLNBT0WQr6LblKqGjNth29/GarTEOyT99hN2TIkGSZUtK2dawzriUzJo0oUJumobXLZ+r+DbvUGo6rMmDJ6zIVT9tq706q3OvS2uUzKaEDAAAAShyhfQJKpm2Fo0l1xlKyC1AsJw2+XO7GS+pV7svfZeg2TYX8lip87pIMpLtbwjp4LKLqCp+OdcaVSjtymcrebZcj2ZI+cHHdiM9/6awpeuTm+dmxch22I8s0NLeugjntAAAAwBhBaJ9AuhMphaMpdScKtwQ+mkzr5Tdb9cKO0SuXkyTLZSoUsFThdedtH3wh9BTEVVdkivCOdcYVT6Xl2Jng7rNccrtMNU4K5OXzLZ01RVdeMFm7W8I62Z3QpIBH8+qDJfmGBgAAAIC+CO3jnG076oxnlsAn04VZAi8NXC532fRKrcpzuZwkedymKgMelXvHxqV8ZkFcudetMq9LscR7DfIyHHXH03ktiDNNg7FuAAAAwBg1NpIOhiyRshWOJRUp4BJ4aeByuWveV62VeS6XkzJ3pCsDlgKesXUJ5yqI83tcklxyHEet4TgFcQAAAACyxlbiwYC6E5nZ6tFEumCfw3Ec/a65Q89tb9JvDp7sc9xvufShS2p1y2X5LZeTJL/HpaqARz6r7xizsYCCOAAAAABDQWgfB9K2o0gspXCssEvgM+Vyx/Tc9ubc5XLlHt26cJo+nOdyOUkq82bGto3VsH4mCuIAAAAADBahfQyLp9IKR1OKxFNyCrgEPppI6ydvHtELOw6rNdy3XG7GlDKtWtygay/Mb7mcJJX73Kr0Z0rbxhMK4gAAAAAMBqF9DOqKZ5bAx5KFWwIvSScicb24s+Wc5XJ/cnmjFp+X33I5wzBU7nWrMmDl/U2AUkJBHAAAAICBENrHmKaT3QVdAi9JfzjRpee3N+tne3KXy117YbVWLmrQ7DyXy5mGoQpfZhm8exyHdQAAAAAYLEL7GJO2C7MMfjDlch++pE63XDZNNXkul3OZhoI+S0G/JRfLwwEAAAAgi9A+waVtR7/Ye0zrtzfr7bbRLZdzm6ZCfksVPjd7uQEAAAAgB0L7BDVQudwFp8vlrilAuZzlMhUKWKrwuvO6Fx4AAAAAxhtC+wRzsiuhDa8f7rdcbtH0Sq0qQLmclAnrlQFL5YR1AAAAABgUQvsE8YcTXXphe7M2jXK5nCR53KYqAx6Ve7ncAAAAAGAoSFHjWDHL5aRMWK8KeFRGWAcAAACAYSFNjUPFLJeTJK/lUlXAUsDD5QUAAAAAI0GqGkeKWS4nST7LpaqAR36PK++vDQAAAAATEaF9HDgRiZ8ulzuiSHx0y+Ukye/JhHWfRVgHAAAAgHwitI9hfzjRpee3N+tnOcrlXKaha943VasWN2pWdXlBPn/A41ZlwCKsAwAAAECBENrHGMdxtLOpXev7KZcLeFz60Pw63XrZNFUXoFxOksq8mbDudRPWAQAAAKCQCO1jRCpt67/ebNX/89/7tLct0uf4lHKPbrmsQR++pK5go9XKvW5VBjzyuPO/Hx4AAAAA0FfJp6/Dhw/rk5/8pCZPniy/36/58+dr+/bt2eOO4+jBBx9UXV2d/H6/VqxYoX379hXxjPPPcRzdsu5V3fEfr/cJ7BdMLdO9N1yoH/zZEt12eWNBAnu5z62GqoCqgz4COwAAAACMopK+037q1CldffXVuuaaa/STn/xEU6dO1b59+1RVVZV9zmOPPaYnnnhCzzzzjGbMmKEHHnhA119/vd566y35fIVZHj7aDMPQNe+r1u+aO7KPLTqvSqsWNxSsXM4wjNN31q2CNM0DAAAAAAZmOI7jDPy04rj33nv161//Wr/85S9zHnccR/X19frSl76ke+65R5LU0dGhmpoaPf3007rtttsG9XnC4bBCoZA6OjoUDAbzdv75dCIS1/J/+LmumjlZKxc1FKxczjAMVfjcCvkJ6wAAAABQKIPNoSWdyl566SUtXrxYK1euVHV1tRYuXKjvfOc72ePvvPOOWltbtWLFiuxjoVBIS5Ys0ZYtW/p93Xg8rnA43OtXqZtc7tVv7r9Of/PBuQUJ7IZhKOS31Fjl15RyL4EdAAAAAEpASSezgwcPat26dZo9e7Y2btyotWvX6o477tAzzzwjSWptbZUk1dTU9Pq4mpqa7LFcHn30UYVCoeyvxsbGwn0ReVSI/eqmYagy4NH0SQFNLvfKTVgHAAAAgJJR0nvabdvW4sWL9cgjj0iSFi5cqDfffFNPPvmk1qxZM+zXve+++3T33Xdnfx8Oh8dMcM8Xl2ko6LMU8lsyzfzviQcAAAAAjFxJ31atq6vTRRdd1OuxuXPn6tChQ5Kk2tpaSVJbW1uv57S1tWWP5eL1ehUMBnv9mijcpqnJZV41VgVUVeYhsAMAAABACSvp0H711Vfr7bff7vXY3r17dd5550mSZsyYodraWr3yyivZ4+FwWFu3btVVV101quda6iyXqcnlXjVO8isU4O46AAAAAIwFJb08/otf/KKWLl2qRx55RKtWrdJrr72mp556Sk899ZSkTHnaXXfdpYcfflizZ8/Ojnyrr6/XTTfdVNyTLxGWy1RlwFK5112Q0XAAAAAAgMIp6dB++eWXa8OGDbrvvvv0ta99TTNmzNA3v/lNrV69OvucL3/5y+rq6tLtt9+u9vZ2LVu2TC+//PK4mdE+XF7LpUq/pbIClNcBAAAAAEZHSc9pHy1jYU57jz8c75J9jj8yn+VSVcAjv8c1imcFAAAAABiKweZQbsOOEwGPW5UBSz6LsA4AAAAA4wWhfYwr87oV8hPWAQAAAGA8IrSPUeVet0IBS143YR0AAAAAxitC+xhT7nMr6LPkcZf0tD4AAAAAQB4Q2scI23a0uyWsk90JTQp4NK8+yKx1AAAAABjnCO1jwKv7j2vd5gM6cDSiZNqR5TI0s7pca5fP1NJZU4p9egAAAACAAmGNdYl7df9x3b9hl/YcCavM61Z1hVdlXrf2HOnU/Rt26dX9x4t9igAAAACAAiG0lzDbdrRu8wFF4inVBn3yWS6ZpiGf5VJt0KtIPK11mw/Itvuf2w4AAAAAGLsI7SVsd0tYB45GVBXwyDB67183DEOVAUsHjka0uyVcpDMEAAAAABQSob2EnexOKJl25HHl/mPyukwlbUcnuxOjfGYAAAAAgNFAaC9hkwIeWS5DibSd83g8bcsyDU0KeEb5zAAAAAAAo4HQXsLm1Qc1s7pcp7qTcpze+9Ydx1F7d1Izq8s1rz5YpDMEAAAAABQSob2EmaahtctnqtzrUms4rmgyLdt2FE2m1RqOq9zr0trlM5nXDgAAAADjFKG9xC2dNUWP3Dxfc+sq1B1P6Wgkru54SnPrKvTIzfOZ0w4AAAAA45i72CeAgS2dNUVXXjBZu1vCOtmd0KSAR/Pqg9xhBwAAAIBxjtA+RpimofkNoWKfBgAAAABgFLE8HgAAAACAEkVoBwAAAACgRBHaAQAAAAAoUYR2AAAAAABKFKEdAAAAAIASRWgHAAAAAKBEEdoBAAAAAChRhHYAAAAAAEoUoR0AAAAAgBJFaAcAAAAAoEQR2gEAAAAAKFGEdgAAAAAAShShHQAAAACAEuUu9gmUAsdxJEnhcLjIZwIAAAAAmAh68mdPHu0PoV1SZ2enJKmxsbHIZwIAAAAAmEg6OzsVCoX6PW44A8X6CcC2bbW0tKiiokKGYRT7dDAGhcNhNTY2qqmpScFgsNinA0jiukTp4tpEKeK6RCniuhzfHMdRZ2en6uvrZZr971znTrsk0zTV0NBQ7NPAOBAMBvmBipLDdYlSxbWJUsR1iVLEdTl+nesOew+K6AAAAAAAKFGEdgAAAAAAShShHcgDr9erhx56SF6vt9inAmRxXaJUcW2iFHFdohRxXUKiiA4AAAAAgJLFnXYAAAAAAEoUoR0AAAAAgBJFaAcAAAAAoEQR2gEAAAAAKFGEdmCQ1q1bp0suuUTBYFDBYFBXXXWVfvKTn2SPx2Ixfe5zn9PkyZNVXl6uW2+9VW1tbUU8Y0xE3/jGN2QYhu66667sY1ybKIavfOUrMgyj168LL7wwe5zrEsVy+PBhffKTn9TkyZPl9/s1f/58bd++PXvccRw9+OCDqqurk9/v14oVK7Rv374injEmgvPPP7/Pz0zDMPS5z31OEj8zJzpCOzBIDQ0N+sY3vqEdO3Zo+/btuvbaa/XRj35Uu3fvliR98Ytf1I9//GM9//zz2rx5s1paWnTLLbcU+awxkWzbtk3f/va3dckll/R6nGsTxTJv3jwdOXIk++tXv/pV9hjXJYrh1KlTuvrqq2VZln7yk5/orbfe0j/+4z+qqqoq+5zHHntMTzzxhJ588klt3bpVZWVluv766xWLxYp45hjvtm3b1uvn5aZNmyRJK1eulMTPzAnPATBsVVVVzr/927857e3tjmVZzvPPP589tmfPHkeSs2XLliKeISaKzs5OZ/bs2c6mTZuc5cuXO3feeafjOA7XJormoYcechYsWJDzGNcliuWv//qvnWXLlvV73LZtp7a21vmHf/iH7GPt7e2O1+t1/uM//mM0ThFwHMdx7rzzTmfmzJmObdv8zITDnXZgGNLptH74wx+qq6tLV111lXbs2KFkMqkVK1Zkn3PhhRdq+vTp2rJlSxHPFBPF5z73OX3oQx/qdQ1K4tpEUe3bt0/19fW64IILtHr1ah06dEgS1yWK56WXXtLixYu1cuVKVVdXa+HChfrOd76TPf7OO++otbW117UZCoW0ZMkSrk2MmkQioe9///v6zGc+I8Mw+JkJlscDQ7Fr1y6Vl5fL6/XqL//yL7VhwwZddNFFam1tlcfjUWVlZa/n19TUqLW1tTgniwnjhz/8oX7729/q0Ucf7XOMaxPFsmTJEj399NN6+eWXtW7dOr3zzjv6oz/6I3V2dnJdomgOHjyodevWafbs2dq4caPWrl2rO+64Q88884wkZa+/mpqaXh/HtYnR9OKLL6q9vV2f/vSnJfH/ckjuYp8AMJa8733v086dO9XR0aEXXnhBa9as0ebNm4t9WpjAmpqadOedd2rTpk3y+XzFPh0g64Ybbsj+9yWXXKIlS5bovPPO0/r16+X3+4t4ZpjIbNvW4sWL9cgjj0iSFi5cqDfffFNPPvmk1qxZU+SzAzK++93v6oYbblB9fX2xTwUlgjvtwBB4PB7NmjVLixYt0qOPPqoFCxbon//5n1VbW6tEIqH29vZez29ra1NtbW1xThYTwo4dO3T06FFddtllcrvdcrvd2rx5s5544gm53W7V1NRwbaIkVFZWas6cOdq/fz8/M1E0dXV1uuiii3o9Nnfu3OzWjZ7r7+xWbq5NjJZ3331XP/vZz/Rnf/Zn2cf4mQlCOzACtm0rHo9r0aJFsixLr7zySvbY22+/rUOHDumqq64q4hlivLvuuuu0a9cu7dy5M/tr8eLFWr16dfa/uTZRCiKRiA4cOKC6ujp+ZqJorr76ar399tu9Htu7d6/OO+88SdKMGTNUW1vb69oMh8PaunUr1yZGxfe+9z1VV1frQx/6UPYxfmaC5fHAIN1333264YYbNH36dHV2durZZ5/Vz3/+c23cuFGhUEif/exndffdd2vSpEkKBoP6whe+oKuuukpXXnllsU8d41hFRYUuvvjiXo+VlZVp8uTJ2ce5NlEM99xzj2688Uadd955amlp0UMPPSSXy6WPf/zj/MxE0Xzxi1/U0qVL9cgjj2jVqlV67bXX9NRTT+mpp56SJBmGobvuuksPP/ywZs+erRkzZuiBBx5QfX29brrppuKePMY927b1ve99T2vWrJHb/V5M42cmCO3AIB09elSf+tSndOTIEYVCIV1yySXauHGj3v/+90uS/umf/kmmaerWW29VPB7X9ddfr29961tFPmuAaxPF0dzcrI9//OM6ceKEpk6dqmXLluk3v/mNpk6dKonrEsVx+eWXa8OGDbrvvvv0ta99TTNmzNA3v/lNrV69OvucL3/5y+rq6tLtt9+u9vZ2LVu2TC+//DK9ISi4n/3sZzp06JA+85nP9DnGz8yJzXAcxyn2SQAAAAAAgL7Y0w4AAAAAQIkitAMAAAAAUKII7QAAAAAAlChCOwAAAAAAJYrQDgAAAABAiSK0AwAAAABQogjtAAAAAACUKEI7AAAAAAAlitAOAAAAAECJIrQDAIBBS6fTWrp0qW655ZZej3d0dKixsVF/8zd/U6QzAwBgfDIcx3GKfRIAAGDs2Lt3ry699FJ95zvf0erVqyVJn/rUp/TGG29o27Zt8ng8RT5DAADGD0I7AAAYsieeeEJf+cpXtHv3br322mtauXKltm3bpgULFhT71AAAGFcI7QAAYMgcx9G1114rl8ulXbt26Qtf+IL+9m//ttinBQDAuENoBwAAw/L73/9ec+fO1fz58/Xb3/5Wbre72KcEAMC4QxEdAAAYln//939XIBDQO++8o+bm5mKfDgAA4xJ32gEAwJC9+uqrWr58uX7605/q4YcfliT97Gc/k2EYRT4zAADGF+60AwCAIenu7tanP/1prV27Vtdcc42++93v6rXXXtOTTz5Z7FMDAGDc4U47AAAYkjvvvFP/9V//pTfeeEOBQECS9O1vf1v33HOPdu3apfPPP7+4JwgAwDhCaAcAAIO2efNmXXfddfr5z3+uZcuW9Tp2/fXXK5VKsUweAIA8IrQDAAAAAFCi2NMOAAAAAECJIrQDAAAAAFCiCO0AAAAAAJQoQjsAAAAAACWK0A4AAAAAQIkitAMAAAAAUKII7QAAAAAAlChCOwAAAAAAJYrQDgAAAABAiSK0AwAAAABQogjtAAAAAACUqP8fMNNZ0NlbNk0AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["# Correlation matrix heatmap\n","plt.figure(figsize=(8, 6))\n","correlation_matrix = data.corr()\n","sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)\n","plt.title('Correlation Matrix Heatmap')\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":545},"id":"_XnMsCc5bAEk","executionInfo":{"status":"ok","timestamp":1719470409511,"user_tz":-330,"elapsed":1344,"user":{"displayName":"Manish rana","userId":"17181877021940383610"}},"outputId":"87086697-5495-4a6f-c63b-f267a00c1ba9"},"execution_count":19,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAoUAAAIQCAYAAAD3ghQkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEn0lEQVR4nO3de1xVVeL///c5gAeRAG/c1BS1j2leKC+EWmqSaNpomUlaIplWZo2imTTebaK0acyyrCmvk2PZpGX2NU2zpmTUNPJOal7yAl6BAAXk7N8f/TzTEVTQfYRtr+fjsR+fzjprr7321j6tea+117EZhmEIAAAAf2j28u4AAAAAyh+DQgAAADAoBAAAAINCAAAAiEEhAAAAxKAQAAAAYlAIAAAAMSgEAACAGBQCAABADAoBU82dO1c2m0379+83rc39+/fLZrNp7ty5prVpdR07dlTHjh3LuxsAcF1hUIgKb+/evXr88cdVv359+fr6KiAgQO3atdNrr72mM2fOlHf3TLNw4UJNnz69vLvhZuDAgbLZbAoICCjxWe/evVs2m002m02vvPJKmds/cuSIJk6cqNTUVBN6e+VsNpuGDRtW4nfnB/rff/+9x65fUZ4DgD827/LuAHApy5cvV58+feRwODRgwAA1bdpUBQUF+vbbb/Xss89q+/bteuedd8q7m6ZYuHChtm3bpuHDh7uV161bV2fOnJGPj0+59Mvb21t5eXlatmyZHnzwQbfv3n//ffn6+urs2bNX1PaRI0c0adIk1atXT5GRkaU+b+XKlVd0vYrqSp8DAJiJQSEqrH379ikuLk5169bVmjVrFBYW5vruqaee0p49e7R8+fKrvo5hGDp79qwqV65c7LuzZ8+qUqVKstvLL1S32Wzy9fUtt+s7HA61a9dO//rXv4oNChcuXKju3bvr3//+9zXpS15envz8/FSpUqVrcj0A+CNh+hgV1tSpU5WTk6P33nvPbUB4XsOGDfXnP//Z9fncuXOaMmWKGjRoIIfDoXr16un5559Xfn6+23n16tVTjx499MUXX6hVq1aqXLmy3n77ba1du1Y2m02LFi3S2LFjVatWLfn5+Sk7O1uStH79enXt2lWBgYHy8/NThw4d9N133132Pj755BN1795d4eHhcjgcatCggaZMmaKioiJXnY4dO2r58uU6cOCAazq2Xr16ki6+pnDNmjW64447VKVKFQUFBalnz57auXOnW52JEyfKZrNpz549GjhwoIKCghQYGKiEhATl5eVdtu/n9evXT//v//0/ZWZmuso2btyo3bt3q1+/fsXqnzp1SqNGjVKzZs3k7++vgIAAdevWTT/++KOrztq1a9W6dWtJUkJCguu+z99nx44d1bRpU23atEl33nmn/Pz89Pzzz7u++/2awvj4ePn6+ha7/9jYWFWtWlVHjhwp9b2W1q5du/TAAw+oWrVq8vX1VatWrfTpp5967Dls2bJFHTp0kJ+fnxo2bKiPPvpIkvT1118rKipKlStXVqNGjfTll1+69eHAgQMaOnSoGjVqpMqVK6t69erq06dPsXWv56fJv/nmGz3++OOqXr26AgICNGDAAJ0+fdrkpwegIiIpRIW1bNky1a9fX23bti1V/ccee0zz5s3TAw88oJEjR2r9+vVKTk7Wzp07tWTJEre6aWlpeuihh/T4449r8ODBatSokeu7KVOmqFKlSho1apTy8/NVqVIlrVmzRt26dVPLli01YcIE2e12zZkzR3fddZf+85//qE2bNhft19y5c+Xv76/ExET5+/trzZo1Gj9+vLKzszVt2jRJ0l/+8hdlZWXp0KFD+vvf/y5J8vf3v2ibX375pbp166b69etr4sSJOnPmjF5//XW1a9dOmzdvdg0oz3vwwQcVERGh5ORkbd68We+++66Cg4P18ssvl+rZ3n///XriiSf08ccf69FHH5X0W0p4880367bbbitW/+eff9bSpUvVp08fRUREKCMjQ2+//bY6dOigHTt2KDw8XI0bN9bkyZM1fvx4DRkyRHfccYckuf15nzx5Ut26dVNcXJwefvhhhYSElNi/1157TWvWrFF8fLxSUlLk5eWlt99+WytXrtSCBQsUHh5+2Xs8e/asTpw4Uaw8JyenWNn27dvVrl071apVS2PGjFGVKlX04YcfqlevXvr3v/+t++67z9TncPr0afXo0UNxcXHq06eP3nrrLcXFxen999/X8OHD9cQTT6hfv36aNm2aHnjgAf3yyy+64YYbJP02eF+3bp3i4uJUu3Zt7d+/X2+99ZY6duyoHTt2yM/Pz+3ehg0bpqCgIE2cOFFpaWl66623dODAAdf/aAJwHTOACigrK8uQZPTs2bNU9VNTUw1JxmOPPeZWPmrUKEOSsWbNGldZ3bp1DUnGihUr3Op+9dVXhiSjfv36Rl5enqvc6XQaN910kxEbG2s4nU5XeV5enhEREWHcfffdrrI5c+YYkox9+/a51bvQ448/bvj5+Rlnz551lXXv3t2oW7dusbr79u0zJBlz5sxxlUVGRhrBwcHGyZMnXWU//vijYbfbjQEDBrjKJkyYYEgyHn30Ubc277vvPqN69erFrnWh+Ph4o0qVKoZhGMYDDzxgdO7c2TAMwygqKjJCQ0ONSZMmufo3bdo013lnz541ioqKit2Hw+EwJk+e7CrbuHFjsXs7r0OHDoYkY9asWSV+16FDB7eyL774wpBkvPDCC8bPP/9s+Pv7G7169brsPRqGYUi67LFx40ZX/c6dOxvNmjVz+/NzOp1G27ZtjZtuuskjz2HhwoWusl27dhmSDLvdbvz3v/8t9gx+305Jf/9SUlIMScb8+fNdZef/7rZs2dIoKChwlU+dOtWQZHzyyScXe3wArhNMH6NCOj9lez7tuJzPP/9ckpSYmOhWPnLkSEkqtvYwIiJCsbGxJbYVHx/vtr4wNTXVNU168uRJnThxQidOnFBubq46d+6sb775Rk6n86J9+31bv/76q06cOKE77rhDeXl52rVrV6nu7/eOHj2q1NRUDRw4UNWqVXOVN2/eXHfffbfrWfzeE0884fb5jjvu0MmTJ13PuTT69euntWvXKj09XWvWrFF6enqJU8fSb+sQz6/DLCoq0smTJ+Xv769GjRpp8+bNpb6mw+FQQkJCqep26dJFjz/+uCZPnqz7779fvr6+evvtt0t9rZ49e2rVqlXFjmeffdat3qlTp7RmzRo9+OCDrj/PEydO6OTJk4qNjdXu3bt1+PBhV//NeA7+/v6Ki4tzfW7UqJGCgoLUuHFjRUVFucrP//PPP//sKvv937/CwkKdPHlSDRs2VFBQUIl9GDJkiNtLTU8++aS8vb1L/HsF4PrC9DEqpICAAEm/DaJK48CBA7Lb7WrYsKFbeWhoqIKCgnTgwAG38oiIiIu2deF3u3fvlvTbYPFisrKyVLVq1RK/2759u8aOHas1a9YUG4RlZWVdtM2LOX8vv5/yPq9x48b64osvlJubqypVqrjKb7zxRrd65/t6+vRp17O+nHvuuUc33HCDPvjgA6Wmpqp169Zq2LBhiXsyOp1Ovfbaa3rzzTe1b98+t/WT1atXL9X1JKlWrVpleqnklVde0SeffKLU1FQtXLhQwcHBpT63du3aiomJKVZ+6NAht8979uyRYRgaN26cxo0bV2Jbx44dU61atUx7DrVr1y42dRsYGKg6deoUK5PktgbwzJkzSk5O1pw5c3T48GEZhuH6rqS/fzfddJPbZ39/f4WFhZm69yaAiolBISqkgIAAhYeHa9u2bWU6r7Rrnkp60/hi351PAadNm3bR7UIutv4vMzNTHTp0UEBAgCZPnqwGDRrI19dXmzdv1nPPPXfJhNFMXl5eJZb/foBwOQ6HQ/fff7/mzZunn3/+WRMnTrxo3RdffFHjxo3To48+qilTpqhatWqy2+0aPnx4me75Un9OJfnhhx907NgxSdLWrVv10EMPlen80jjf/1GjRl00bT7/P07Meg4X+/MrzZ/r008/rTlz5mj48OGKjo5WYGCgbDab4uLirtnfPwDWwKAQFVaPHj30zjvvKCUlRdHR0ZesW7duXTmdTu3evVuNGzd2lWdkZCgzM1N169a94n40aNBA0m8D1ZKSpEtZu3atTp48qY8//lh33nmnq3zfvn3F6pZ2QHv+XtLS0op9t2vXLtWoUcMtJTRTv379NHv2bNntdrfpzAt99NFH6tSpk9577z238szMTNWoUcP12cwXF3Jzc5WQkKAmTZqobdu2mjp1qu677z7Xm71mqV+/viTJx8fnsn8fyuM5lNSH+Ph4/e1vf3OVnT171u1N8t/bvXu3OnXq5Pqck5Ojo0eP6p577vFYHwFUDKwpRIU1evRoValSRY899pgyMjKKfb9371699tprkuT6D9aFvwjy6quvSpK6d+9+xf1o2bKlGjRooFdeeaXEN1GPHz9+0XPPJzm/T24KCgr05ptvFqtbpUqVUk0nh4WFKTIyUvPmzXP7D/u2bdu0cuVKj/7Hu1OnTpoyZYreeOMNhYaGXrSel5dXsRRy8eLFrrV2550fvF5sgFIWzz33nA4ePKh58+bp1VdfVb169RQfH19sS6KrFRwcrI4dO+rtt9/W0aNHi33/+78P5fEcLlRSH15//XW3qezfe+edd1RYWOj6/NZbb+ncuXPq1q2b6X0DULGQFKLCatCggRYuXKi+ffuqcePGbr9osm7dOi1evFgDBw6UJLVo0ULx8fF65513XFO2GzZs0Lx589SrVy+35KOs7Ha73n33XXXr1k233HKLEhISVKtWLR0+fFhfffWVAgICtGzZshLPbdu2rapWrar4+Hg988wzstlsWrBgQYnTti1bttQHH3ygxMREtW7dWv7+/rr33ntLbHfatGnq1q2boqOjNWjQINeWNIGBgZec1r1adrtdY8eOvWy9Hj16aPLkyUpISFDbtm21detWvf/++66U7bwGDRooKChIs2bN0g033KAqVaooKirqkms+S7JmzRq9+eabmjBhgmuLnDlz5qhjx44aN26cpk6dWqb2LmfmzJlq3769mjVrpsGDB6t+/frKyMhQSkqKDh065NqH8Fo/h5L06NFDCxYsUGBgoJo0aaKUlBR9+eWXF13TWFBQoM6dO+vBBx9UWlqa3nzzTbVv315/+tOfrrovACq4cnvvGSiln376yRg8eLBRr149o1KlSsYNN9xgtGvXznj99dfdtgQpLCw0Jk2aZERERBg+Pj5GnTp1jKSkJLc6hvHbljTdu3cvdp3zW9IsXry4xH788MMPxv33329Ur17dcDgcRt26dY0HH3zQWL16tatOSVvSfPfdd8btt99uVK5c2QgPDzdGjx7t2jrkq6++ctXLyckx+vXrZwQFBRmSXNvTlLQljWEYxpdffmm0a9fOqFy5shEQEGDce++9xo4dO9zqnN+S5vjx427lJfWzJL/fkuZiLrYlzciRI42wsDCjcuXKRrt27YyUlJQSt5L55JNPjCZNmhje3t5u99mhQwfjlltuKfGav28nOzvbqFu3rnHbbbcZhYWFbvVGjBhh2O12IyUl5ZL3IMl46qmnSvzu/LP6/ZY0hmEYe/fuNQYMGGCEhoYaPj4+Rq1atYwePXoYH3300TV5Dhf7e3zhvZw+fdpISEgwatSoYfj7+xuxsbHGrl27jLp16xrx8fHF7vPrr782hgwZYlStWtXw9/c3+vfv77b1EYDrl80wyrDSHABwXZo7d64SEhK0ceNGtWrVqry7A6AcsKYQAAAADAoBAADAoBAAAABiUAgAkDRw4EAZhsF6QuAKfPPNN7r33nsVHh4um82mpUuXXvactWvX6rbbbpPD4VDDhg01d+7cYnVmzpypevXqydfXV1FRUdqwYYP5nf8dBoUAAABXITc3Vy1atNDMmTNLVX/fvn3q3r27OnXqpNTUVA0fPlyPPfaYvvjiC1ed81uUTZgwQZs3b1aLFi0UGxvr+tUmT+DtYwAAAJPYbDYtWbJEvXr1umid5557TsuXL3f7Kde4uDhlZmZqxYoVkqSoqCi1bt1ab7zxhqTffmKzTp06evrppzVmzBiP9J2kEAAA4AL5+fnKzs52O8z6haSUlJRiP5MZGxurlJQUSb9tIr9p0ya3Ona7XTExMa46nlBhftFkuU+j8u4CAA8JbOKZ32IGUP7a/7i53K7tybHDxr88pEmTJrmVTZgwwZRfjUpPT1dISIhbWUhIiLKzs3XmzBmdPn1aRUVFJdbZtWvXVV//YirMoBAAAKCiSEpKUmJioluZw+Eop95cGwwKAQCAJdl8bB5r2+FweGwQGBoaqoyMDLeyjIwMBQQEqHLlyvLy8pKXl1eJdUJDQz3SJ4k1hQAAANdUdHS0Vq9e7Va2atUqRUdHS5IqVaqkli1butVxOp1avXq1q44nkBQCAABLsnt7Liksi5ycHO3Zs8f1ed++fUpNTVW1atV04403KikpSYcPH9b8+fMlSU888YTeeOMNjR49Wo8++qjWrFmjDz/8UMuXL3e1kZiYqPj4eLVq1Upt2rTR9OnTlZubq4SEBI/dB4NCAACAq/D999+rU6dOrs/n1yLGx8dr7ty5Onr0qA4ePOj6PiIiQsuXL9eIESP02muvqXbt2nr33XcVGxvrqtO3b18dP35c48ePV3p6uiIjI7VixYpiL5+YqcLsU8jbx8D1i7ePgetXeb59/EX1WzzWduzJ7R5ru6IiKQQAAJZUUaaPrxe8aAIAAACSQgAAYE2e3JLmj4ikEAAAACSFAADAmlhTaC6SQgAAAJAUAgAAa2JNoblICgEAAEBSCAAArIk1heYiKQQAAABJIQAAsCabF0mhmRgUAgAAS7IzKDQV08cAAAAgKQQAANZks5MUmomkEAAAACSFAADAmmxeZFtm4mkCAACApBAAAFgTbx+bi6QQAAAAJIUAAMCaePvYXAwKAQCAJTF9bC6mjwEAAEBSCAAArInfPjYXSSEAAABICgEAgDXZ7GRbZuJpAgAAgKQQAABYE1vSmIukEAAAACSFAADAmtin0FwMCgEAgCUxfWwupo8BAABAUggAAKyJLWnMxdMEAAAASSEAALAm1hSai6QQAAAAJIUAAMCa2JLGXCSFAAAAICkEAADWxJpCczEoBAAAlsSWNObiaQIAAICkEAAAWBPTx+YiKQQAAABJIQAAsCaSQnORFAIAAICkEAAAWBNJoblICgEAAEBSCAAArIl9Cs3F0wQAAJZk97J57CirmTNnql69evL19VVUVJQ2bNhw0bodO3aUzWYrdnTv3t1VZ+DAgcW+79q16xU9p9IiKQQAALgKH3zwgRITEzVr1ixFRUVp+vTpio2NVVpamoKDg4vV//jjj1VQUOD6fPLkSbVo0UJ9+vRxq9e1a1fNmTPH9dnhcHjuJsSgEAAAWFRFedHk1Vdf1eDBg5WQkCBJmjVrlpYvX67Zs2drzJgxxepXq1bN7fOiRYvk5+dXbFDocDgUGhrquY5fgOljAACAC+Tn5ys7O9vtyM/PL1avoKBAmzZtUkxMjKvMbrcrJiZGKSkppbrWe++9p7i4OFWpUsWtfO3atQoODlajRo305JNP6uTJk1d3U5fBoBAAAFiSzW732JGcnKzAwEC3Izk5uVgfTpw4oaKiIoWEhLiVh4SEKD09/bL3sGHDBm3btk2PPfaYW3nXrl01f/58rV69Wi+//LK+/vprdevWTUVFRVf30C6B6WMAAIALJCUlKTEx0a3ME2v63nvvPTVr1kxt2rRxK4+Li3P9c7NmzdS8eXM1aNBAa9euVefOnU3vh0RSCAAALMpmt3nscDgcCggIcDtKGhTWqFFDXl5eysjIcCvPyMi47HrA3NxcLVq0SIMGDbrsvdavX181atTQnj17yvaQyoBBIQAAwBWqVKmSWrZsqdWrV7vKnE6nVq9erejo6Eueu3jxYuXn5+vhhx++7HUOHTqkkydPKiws7Kr7fDEMCgEAgCV5Miksi8TERP3jH//QvHnztHPnTj355JPKzc11vY08YMAAJSUlFTvvvffeU69evVS9enW38pycHD377LP673//q/3792v16tXq2bOnGjZsqNjY2Ct/YJfBmkIAAGBJFeUXTfr27avjx49r/PjxSk9PV2RkpFasWOF6+eTgwYOyX9DXtLQ0ffvtt1q5cmWx9ry8vLRlyxbNmzdPmZmZCg8PV5cuXTRlyhSP7lVoMwzD8FjrZbDcp1F5dwGAhwQ2qXL5SgAsqf2Pm8vt2gefuN9jbd8462OPtV1RkRQCAABLqiibV18vKkbuCgAAgHJFUggAACypoqwpvF7wNAEAAEBSCAAALMrGmkIzkRQCAACApBAAAFgTbx+bi0EhAACwJF40MRdPEwAAACSFAADAmpg+NhdJIQAAAEgKAQCANbGm0Fw8TQAAAJAUAgAAa2JNoblICgEAAEBSCAAArImk0FwMCgEAgDXxoompeJoAAAAgKQQAANZkszF9bCaSQgAAAJAUAgAAa2LzanPxNAEAAEBSCAAArIktacxFUggAAACSQgAAYFGsKTQVTxMAAAAkhQAAwJpYU2guBoUAAMCSbDYmPM3E0wQAAABJIQAAsCimj01FUggAAACSQgAAYE38zJ25eJoAAAAgKQQAANbEljTmIikEAAAASSEAALAo9ik0FYNCAABgSUwfm4shNgAAAEgKAQCARbEljal4mgAAACApBAAA1mSzsabQTCSFAAAAICkEAAAWxZpCU/E0AQAAQFIIAACsiX0KzcWgENdMtfatVH/kIAXe1lS+4cH6vvdQZXy6ury7BeASwvo+qFrxA1SpRnXl/vST9r40VTnbtpdY1+btrdqDEhR8bw85goN1Zv8B7Zs+Q5nr1rnq1H40QdU736XKEfXkzM/Xr6k/av/0GTpz4MC1uiVcT/hFE1PxNHHNeFXxU/aWNG17ZlJ5dwVAKdSI7aKIUYk6+PY7+iGun3LTdqvpWzPlU61qifXrDhuq0Ad66+eXpmrTfQ/o6OKP1Pjvr6jKzY1cdQJbtdTRDz7Ulkfitf3xJ2Xz9tYts96UvbLvtbotwCNmzpypevXqydfXV1FRUdqwYcNF686dO1c2m83t8PV1/3fAMAyNHz9eYWFhqly5smJiYrR7926P3gODQlwzx7/4Rj9NmK6MT74s764AKIVaj/RX+sdLdOyTT3Xm533a88JfVXT2rEJ69Syxfs3u3XXo3dk6/e13yj98WOmLP9Lpb79TrQGPuOpsHzpMxz5dpry9Pyv3p936afwE+YaHyb9xk2t1W7ie2G2eO8rggw8+UGJioiZMmKDNmzerRYsWio2N1bFjxy56TkBAgI4ePeo6DlyQlk+dOlUzZszQrFmztH79elWpUkWxsbE6e/bsFT2q0ijzoPCrr7666Hdvv/32VXUGAFAx2Ly95d+4sTL/u/5/hYahzP+u1w3Nm5d4jr2Sj5wF+W5lzvx8BURGXvQ63v43SJLOZWdddZ+B8vLqq69q8ODBSkhIUJMmTTRr1iz5+flp9uzZFz3HZrMpNDTUdYSEhLi+MwxD06dP19ixY9WzZ081b95c8+fP15EjR7R06VKP3UeZB4Vdu3bVs88+q8LCQlfZiRMndO+992rMmDGmdg4AUD58qgbJ5u2twpOn3MoLT55SpRrVSzzn9LoUhT/ysHxvrCPZbAq6PUrV7+qkSjVrlHwRm031R49S1g8/KG/PXrNvAX8ANpvdY0dpFRQUaNOmTYqJiXGV2e12xcTEKCUl5aLn5eTkqG7duqpTp4569uyp7dv/t1Z33759Sk9Pd2szMDBQUVFRl2zzal1RUrhkyRK1bt1aO3bs0PLly9W0aVNlZ2crNTW1VG3k5+crOzvb7Sg0nGXtCgCgAvl56jSdPXBQLZd+rHbfr1f9pOeU8ckyGc6S//97g+fHyK9BA6WNTrrGPQUur6SxSn5+frF6J06cUFFRkVvSJ0khISFKT08vse1GjRpp9uzZ+uSTT/TPf/5TTqdTbdu21aFDhyTJdV5Z2jRDmQeFbdu2VWpqqpo2barbbrtN9913n0aMGKG1a9eqbt26pWojOTlZgYGBbseHzlOXPxEAcE0Uns6Uce6cfKpXcyv3qV5NBSdOlnjOudOZ2jlipNbd3k4bu3XX5p73y3kmT2cPHy5Wt37Sc6p25x3aOniICi6x7gq4JA+uKSxprJKcnGxKt6OjozVgwABFRkaqQ4cO+vjjj1WzZs1yX4Z3RS+a/PTTT/r+++9Vu3ZteXt7Ky0tTXl5eaU+PykpSVlZWW7Hg/Zqlz8RAHBNGOfOKWfnTgVFtflfoc2moKg2+nXLlkufW1CggmPHZfP2VvXOnXXqq6/dvq+f9Jyq39VJWwc/rvzDRzzRfeCqlTRWSUoqnmrXqFFDXl5eysjIcCvPyMhQaGhoqa7l4+OjW2+9VXv27JEk13lX0+aVKPOg8KWXXlJ0dLTuvvtubdu2TRs2bNAPP/yg5s2bl3qe2+FwKCAgwO3wYa+h655XFT8FtLhZAS1uliT5RdRWQIub5VsnrJx7BqAkhxe8r9D771PwvT1UOSJCDcY+L6/KlZWx9FNJ0v+9MFl1nxnmqu/frKmqd75Ljlq1FHDrrbrlzTdks9t0aO5cV50Gz49R8D33KG3M8yrKzZNP9eryqV5ddofjWt8ergM2u91jR0ljFUcJf08rVaqkli1bavXq/+2763Q6tXr1akVHR5fqPoqKirR161aFhf3238OIiAiFhoa6tZmdna3169eXus0rUebNq1977TUtXbpU3bp1kyQ1bdpUGzZs0PPPP6+OHTuWON8OSFJgy6aKXr3A9bnJK89Lkn6Z/7G2DGJNEVDRnPhipXyqVtWNQ5/8bfPqtDRtGzpMhad+W+7jCA11Wy9or1RJdZ8aKt/atVSUl6fT336nn/4yVkW/5rjqhPV9UJLUfPa7btf6adwEHft02TW4K1xXbBXjF00SExMVHx+vVq1aqU2bNpo+fbpyc3OVkJAgSRowYIBq1arlmn6ePHmybr/9djVs2FCZmZmaNm2aDhw4oMcee0zSb28mDx8+XC+88IJuuukmRUREaNy4cQoPD1evXr08dh9lHhRu3bpVNWq4v0nm4+OjadOmqUePHqZ1DNefU99s0HKfRpevCKDCOLroAx1d9EGJ3219bIjb5+xNm7X5/gcu2d63LW4zrW9ARdG3b18dP35c48ePV3p6uiIjI7VixQrXiyIHDx6U3f6/GdHTp09r8ODBSk9PV9WqVdWyZUutW7dOTZr8b7/O0aNHKzc3V0OGDFFmZqbat2+vFStWFNvk2kw2wzAMj7VeBgwWgOtXYJMq5d0FAB7S/sfN5XbtvLme+4Usv4ETPNZ2RcVCPgAAAJR9+hgAAKBCqCBrCq8XJIUAAAAgKQQAANZks5NtmYmnCQAAAJJCAABgUfzwhakYFAIAAGuy86KJmRhiAwAAgKQQAABYk43pY1PxNAEAAEBSCAAALIo1haYiKQQAAABJIQAAsCjWFJqKpwkAAACSQgAAYFE21hSaiUEhAACwJn772FQ8TQAAAJAUAgAAi+JFE1PxNAEAAEBSCAAALIrNq01FUggAAACSQgAAYFGsKTQVTxMAAAAkhQAAwKLYvNpUDAoBAIA1sXm1qXiaAAAAICkEAAAWxfSxqUgKAQAAQFIIAAAsii1pTMXTBAAAAEkhAACwKN4+NhVPEwAAACSFAADAonj72FQMCgEAgDXxoompeJoAAAAgKQQAABbF9LGpSAoBAABAUggAACyKLWlMxdMEAAAASSEAALAmgzWFpiIpBAAAAEkhAACwKPYpNBVPEwAAACSFAADAokgKTcWgEAAAWBIvmpiLITYAAABICgEAgEUxfWwqniYAAMBVmjlzpurVqydfX19FRUVpw4YNF637j3/8Q3fccYeqVq2qqlWrKiYmplj9gQMHymazuR1du3b16D0wKAQAANZks3nuKIMPPvhAiYmJmjBhgjZv3qwWLVooNjZWx44dK7H+2rVr9dBDD+mrr75SSkqK6tSpoy5duujw4cNu9bp27aqjR4+6jn/9619X/KhKw2YYhuHRK5TScp9G5d0FAB4S2KRKeXcBgIe0/3FzuV077z+LPda23x19Sl03KipKrVu31htvvCFJcjqdqlOnjp5++mmNGTPmsucXFRWpatWqeuONNzRgwABJvyWFmZmZWrp06RX1/0qQFAIAAGuy2z13lFJBQYE2bdqkmJiY33XLrpiYGKWkpJSqjby8PBUWFqpatWpu5WvXrlVwcLAaNWqkJ598UidPnix1v64EL5oAAABcID8/X/n5+W5lDodDDofDrezEiRMqKipSSEiIW3lISIh27dpVqms999xzCg8PdxtYdu3aVffff78iIiK0d+9ePf/88+rWrZtSUlLk5eV1hXd1aSSFAADAkgybzWNHcnKyAgMD3Y7k5GTT7+Gll17SokWLtGTJEvn6+rrK4+Li9Kc//UnNmjVTr1699Nlnn2njxo1au3at6X04j6QQAABYkwe3pElKSlJiYqJb2YUpoSTVqFFDXl5eysjIcCvPyMhQaGjoJa/xyiuv6KWXXtKXX36p5s2bX7Ju/fr1VaNGDe3Zs0edO3cu5V2UDUkhAADABRwOhwICAtyOkgaFlSpVUsuWLbV69WpXmdPp1OrVqxUdHX3R9qdOnaopU6ZoxYoVatWq1WX7c+jQIZ08eVJhYWFXdkOlQFIIAAAsyaggm1cnJiYqPj5erVq1Ups2bTR9+nTl5uYqISFBkjRgwADVqlXLNf388ssva/z48Vq4cKHq1aun9PR0SZK/v7/8/f2Vk5OjSZMmqXfv3goNDdXevXs1evRoNWzYULGxsR67DwaFAAAAV6Fv3746fvy4xo8fr/T0dEVGRmrFihWul08OHjwo++/eaH7rrbdUUFCgBx54wK2dCRMmaOLEifLy8tKWLVs0b948ZWZmKjw8XF26dNGUKVNKTCvNwj6FADyOfQqB61d57lOYs36Zx9r2j7rXY21XVBUjdwUAAEC5YvoYAABYUkVZU3i94GkCAACApBAAAFiUzVbePbiuMCgEAADWxPSxqXiaAAAAICkEAADWZDB9bCqSQgAAAJAUAgAAi2JNoal4mgAAACApBAAA1mSINYVmIikEAAAASSEAALAmfubOXAwKAQCANTEoNBVPEwAAACSFAADAmti82lwkhQAAACApBAAA1sSLJubiaQIAAICkEAAAWBRrCk1FUggAAACSQgAAYE2sKTQXg0IAAGBJ/PaxuRhiAwAAgKQQAABYE9PH5uJpAgAAgKQQAABYFFvSmIqkEAAAACSFAADAmgyyLVPxNAEAAEBSCAAArMlgTaGpGBQCAABLYksac/E0AQAAQFIIAACsiZ+5MxdJIQAAAEgKAQCANbGm0Fw8TQAAAJAUAgAAa2JLGnORFAIAAICkEAAAWBNvH5uLQSEAALAkXjQxF08TAAAAJIUAAMCamD42F0khAAAASAoBAIA1sabQXDxNAAAAkBQCAABrYk2huUgKAQAArtLMmTNVr149+fr6KioqShs2bLhk/cWLF+vmm2+Wr6+vmjVrps8//9zte8MwNH78eIWFhaly5cqKiYnR7t27PXkLDAoBAIA1GTa7x46y+OCDD5SYmKgJEyZo8+bNatGihWJjY3Xs2LES669bt04PPfSQBg0apB9++EG9evVSr169tG3bNledqVOnasaMGZo1a5bWr1+vKlWqKDY2VmfPnr2qZ3YpNsMwDI+1XgbLfRqVdxcAeEhgkyrl3QUAHtL+x83ldu2f9+71WNv1GzQodd2oqCi1bt1ab7zxhiTJ6XSqTp06evrppzVmzJhi9fv27avc3Fx99tlnrrLbb79dkZGRmjVrlgzDUHh4uEaOHKlRo0ZJkrKyshQSEqK5c+cqLi7uKu+uZCSFAAAAF8jPz1d2drbbkZ+fX6xeQUGBNm3apJiYGFeZ3W5XTEyMUlJSSmw7JSXFrb4kxcbGuurv27dP6enpbnUCAwMVFRV10TbNUGFeNCFJAK5fWTtyy7sLAK5Dhs1zL5okJydr0qRJbmUTJkzQxIkT3cpOnDihoqIihYSEuJWHhIRo165dJbadnp5eYv309HTX9+fLLlbHEyrMoBAAAKCiSEpKUmJioluZw+Eop95cGwwKAQCAJRmG55JCh8NRqkFgjRo15OXlpYyMDLfyjIwMhYaGlnhOaGjoJeuf/78ZGRkKCwtzqxMZGVmW2ygT1hQCAABcoUqVKqlly5ZavXq1q8zpdGr16tWKjo4u8Zzo6Gi3+pK0atUqV/2IiAiFhoa61cnOztb69esv2qYZSAoBAIAlGRUk20pMTFR8fLxatWqlNm3aaPr06crNzVVCQoIkacCAAapVq5aSk5MlSX/+85/VoUMH/e1vf1P37t21aNEiff/993rnnXckSTabTcOHD9cLL7ygm266SRERERo3bpzCw8PVq1cvj90Hg0IAAICr0LdvXx0/flzjx49Xenq6IiMjtWLFCteLIgcPHpTd/r8BbNu2bbVw4UKNHTtWzz//vG666SYtXbpUTZs2ddUZPXq0cnNzNWTIEGVmZqp9+/ZasWKFfH19PXYfFWafwm9b3FbeXQDgIbx9DFy/uhemldu1f9p70GNt/1+DGz3WdkVFUggAACyJ3z42V8WYjAcAAEC5IikEAACWRFJoLpJCAAAAkBQCAABrIik0F0khAAAASAoBAIA1efJn7v6ISAoBAABAUggAAKyJNYXmIikEAAAASSEAALAmkkJzMSgEAACWxKDQXEwfAwAAgKQQAABYE1vSmIukEAAAACSFAADAmpysKTQVSSEAAABICgEAgDXx9rG5SAoBAABAUggAAKyJt4/NxaAQAABYEtPH5mL6GAAAACSFAADAmpg+NhdJIQAAAEgKAQCANbGm0FwkhQAAACApBAAA1sSaQnORFAIAAICkEAAAWJOzvDtwnWFQCAAALInpY3MxfQwAAACSQgAAYE1sSWMukkIAAACQFAIAAGtiTaG5SAoBAABAUggAAKyJNYXmIikEAAAASSEAALAmp1HePbi+MCgEAACWxPSxuZg+BgAAAEkhAACwJrakMRdJIQAAAEgKAQCANRm8aGIqkkIAAACQFAIAAGty8vaxqUgKAQAAQFIIAACsibePzUVSCAAALMkwPHd4yqlTp9S/f38FBAQoKChIgwYNUk5OziXrP/3002rUqJEqV66sG2+8Uc8884yysrLc6tlstmLHokWLytQ3kkIAAIBrpH///jp69KhWrVqlwsJCJSQkaMiQIVq4cGGJ9Y8cOaIjR47olVdeUZMmTXTgwAE98cQTOnLkiD766CO3unPmzFHXrl1dn4OCgsrUN5thVIwXur9tcVt5dwGAh2TtyC3vLgDwkO6FaeV27ZU/Fnis7S4tKpne5s6dO9WkSRNt3LhRrVq1kiStWLFC99xzjw4dOqTw8PBStbN48WI9/PDDys3Nlbf3b/mezWbTkiVL1KtXryvuH9PHAAAAF8jPz1d2drbbkZ+ff1VtpqSkKCgoyDUglKSYmBjZ7XatX7++1O1kZWUpICDANSA876mnnlKNGjXUpk0bzZ49W2XN/RgUAgAAS3IanjuSk5MVGBjodiQnJ19Vf9PT0xUcHOxW5u3trWrVqik9Pb1UbZw4cUJTpkzRkCFD3MonT56sDz/8UKtWrVLv3r01dOhQvf7662XqH2sKAQAALpCUlKTExES3MofDUWLdMWPG6OWXX75kezt37rzqPmVnZ6t79+5q0qSJJk6c6PbduHHjXP986623Kjc3V9OmTdMzzzxT6vYZFAIAAEvy5JY0Dkeliw4CLzRy5EgNHDjwknXq16+v0NBQHTt2zK383LlzOnXqlEJDQy95/q+//qquXbvqhhtu0JIlS+Tj43PJ+lFRUZoyZYry8/NLfR8MCgEAAK5CzZo1VbNmzcvWi46OVmZmpjZt2qSWLVtKktasWSOn06moqKiLnpedna3Y2Fg5HA59+umn8vX1vey1UlNTVbVq1VIPCCUGhQAAwKIqxv4ppde4cWN17dpVgwcP1qxZs1RYWKhhw4YpLi7O9ebx4cOH1blzZ82fP19t2rRRdna2unTpory8PP3zn/90vfQi/TYY9fLy0rJly5SRkaHbb79dvr6+WrVqlV588UWNGjWqTP1jUAgAACzJir99/P7772vYsGHq3Lmz7Ha7evfurRkzZri+LywsVFpamvLy8iRJmzdvdr2Z3LBhQ7e29u3bp3r16snHx0czZ87UiBEjZBiGGjZsqFdffVWDBw8uU9/YpxCAx7FPIXD9Ks99Cj/bfM5jbfe47Y+Xm/3x7hgAAFwXKkasdf1gn0IAAACQFAIAAGvy5JY0f0QkhQAAACApBAAA1uRkTaGpSAoBAABAUggAAKyJt4/NxaAQAABYkmHBzasrMqaPAQAAQFIIAACsiRdNzEVSCAAAAJJCAABgTbxoYi6SQgAAAJAUAgAAayIpNBdJIQAAAEgKAQCANTkN9ik0E4NCAABgSUwfm4vpYwAAAJAUAgAAayIpNBdJIQAAAEgKAQCANfEzd+YiKQQAAABJIQAAsCaDLWlMRVIIAAAAkkIAAGBNvH1sLpJCAAAAkBQCAABr4u1jczEoBAAAlsT0sbmYPgYAAABJIQAAsCaSQnORFAIAAICkEAAAWBMvmpiLpBAAAAAkhQAAwJpYU2gukkIAAACQFAIAAGtyOsu7B9cXBoUAAMCSmD42F9PHAAAAICkEAADWRFJoLpJCAAAAkBQCAABrYvNqc5EUAgAAgKQQAABYk+HRRYU2D7ZdMZEUAgAAgKQQAABYE28fm4tBIa5aWN8HVSt+gCrVqK7cn37S3pemKmfb9hLr2ry9VXtQgoLv7SFHcLDO7D+gfdNnKHPdOled2o8mqHrnu1Q5op6c+fn6NfVH7Z8+Q2cOHLhWtwSgjKq1b6X6Iwcp8Lam8g0P1ve9hyrj09Xl3S1c5/hFE3MxfYyrUiO2iyJGJerg2+/oh7h+yk3braZvzZRPtaol1q87bKhCH+itn1+aqk33PaCjiz9S47+/oio3N3LVCWzVUkc/+FBbHonX9seflM3bW7fMelP2yr7X6rYAlJFXFT9lb0nTtmcmlXdXgArt1KlT6t+/vwICAhQUFKRBgwYpJyfnkud07NhRNpvN7XjiiSfc6hw8eFDdu3eXn5+fgoOD9eyzz+rcuXNl6htJIa5KrUf6K/3jJTr2yaeSpD0v/FVV72yvkF49dWj23GL1a3bvrkPvvqfT334nSUpf/JGCbo9SrQGP6Kfnx0qStg8d5nbOT+Mn6Pa1a+TfuImyN2/27A0BuCLHv/hGx7/4pry7gT8YK04f9+/fX0ePHtWqVatUWFiohIQEDRkyRAsXLrzkeYMHD9bkyZNdn/38/Fz/XFRUpO7duys0NFTr1q3T0aNHNWDAAPn4+OjFF18sdd/KnBTGx8frm2/4Fx+/TQX7N26szP+u/1+hYSjzv+t1Q/PmJZ5jr+QjZ0G+W5kzP18BkZEXvY63/w2SpHPZWVfdZwAAysvOnTu1YsUKvfvuu4qKilL79u31+uuva9GiRTpy5Mglz/Xz81NoaKjrCAgIcH23cuVK7dixQ//85z8VGRmpbt26acqUKZo5c6YKCgpK3b8yDwqzsrIUExOjm266SS+++KIOHz5c1iZwnfCpGiSbt7cKT55yKy88eUqValQv8ZzT61IU/sjD8r2xjmSzKej2KFW/q5Mq1axR8kVsNtUfPUpZP/ygvD17zb4FAICFOQ3PHZ6QkpKioKAgtWrVylUWExMju92u9evXX+JM6f3331eNGjXUtGlTJSUlKS8vz63dZs2aKSQkxFUWGxur7Oxsbd9e8hr/kpR5+njp0qU6fvy4FixYoHnz5mnChAmKiYnRoEGD1LNnT/n4+Fy2jfz8fOXnu6dFBU6nKtlZ4ni9+3nqNN00fpxaLv1YMgydOXRIGZ8sU0ivP5VYv8HzY+TXoIG2DHz0GvcUAPBHVtJYxeFwyOFwXHGb6enpCg4Odivz9vZWtWrVlJ6eftHz+vXrp7p16yo8PFxbtmzRc889p7S0NH388ceudn8/IJTk+nypdi90RaOwmjVrKjExUT/++KPWr1+vhg0b6pFHHlF4eLhGjBih3bt3X/L85ORkBQYGuh3/PJZxJV1BOSo8nSnj3Dn5VK/mVu5TvZoKTpws8ZxzpzO1c8RIrbu9nTZ2667NPe+X80yezpaQONdPek7V7rxDWwcPUcGxYx65BwCAdRmG546SxirJyckl9mPMmDHFXgS58Ni1a9cV3+eQIUMUGxurZs2aqX///po/f76WLFmivXvNnUG7qmju/ELJVatWycvLS/fcc4+2bt2qJk2a6O9///tFz0tKSlJWVpbb8XBwyEXro2Iyzp1Tzs6dCopq879Cm01BUW3065Ytlz63oEAFx47L5u2t6p0769RXX7t9Xz/pOVW/q5O2Dn5c+Ycvvc4CAACzlTRWSUpKKrHuyJEjtXPnzkse9evXV2hoqI5dEHKcO3dOp06dUmhoaKn7FhUVJUnas2ePJCk0NFQZGe7h2vnPZWm3zNPHhYWF+vTTTzVnzhytXLlSzZs31/Dhw9WvXz/XosclS5bo0Ucf1YgRI0pso6T4laljazq84H3935RJytm+Q79u267wh/vJq3JlZSz97W3k/3thsvKPHdOBGW9IkvybNZUjOFg5u9LkCA7WjU8+LpvdpkNz57rabPD8GNXs1k07ho9QUW6efKr/tj6xKCdHzguifAAVg1cVP1VpeKPrs19EbQW0uFkFp7J09pej5dgzXM8MTy3+U9mmimvWrKmaNWtetl50dLQyMzO1adMmtWzZUpK0Zs0aOZ1O10CvNFJTUyVJYWFhrnb/+te/6tixY67p6VWrVikgIEBNmjQpdbtlHhSGhYXJ6XTqoYce0oYNGxRZwlujnTp1UlBQUFmbhgWd+GKlfKpW1Y1Dn/xt8+q0NG0bOkyFp357+cQRGirjd7uL2itVUt2nhsq3di0V5eXp9Lff6ae/jFXRr//boyms74OSpOaz33W71k/jJujYp8uuwV0BKKvAlk0VvXqB63OTV56XJP0y/2NtGVRyugJcLQ+OCT2icePG6tq1qwYPHqxZs2apsLBQw4YNU1xcnMLDwyVJhw8fVufOnTV//ny1adNGe/fu1cKFC3XPPfeoevXq2rJli0aMGKE777xTzf//nT66dOmiJk2a6JFHHtHUqVOVnp6usWPH6qmnnirTGkibUcZfk16wYIH69OkjX19zNxL+tsVtprYHoOLI2pFb3l0A4CHdC9PK7dpT/+25nzQZ3dszM5inTp3SsGHDtGzZMtntdvXu3VszZsyQv7+/JGn//v2KiIjQV199pY4dO+qXX37Rww8/rG3btik3N1d16tTRfffdp7Fjx7ptS3PgwAE9+eSTWrt2rapUqaL4+Hi99NJL8vYuff5X5kGhpzAoBK5fDAqB61d5Dgpf/shzg8LnHvjjLWv7490xAAAAiuFn7gAAgCU5rbaosIIjKQQAAABJIQAAsKaK8VbE9YOkEAAAACSFAADAmkgKzcWgEAAAWJKTUaGpmD4GAAAASSEAALAmw3N7V/8hkRQCAACApBAAAFhTBfml3usGSSEAAABICgEAgDU5WVNoKpJCAAAAkBQCAABrYk2huRgUAgAAS3IyJjQV08cAAAAgKQQAANZkEBWaiqQQAAAAJIUAAMCaeM/EXCSFAAAAICkEAADW5GRNoalICgEAAEBSCAAArInNq83FoBAAAFiSwW8fm4rpYwAAAJAUAgAAa3IyfWwqkkIAAACQFAIAAGviRRNzkRQCAACApBAAAFgTm1ebi6QQAAAAJIUAAMCaWFJoLgaFAADAkgymj03F9DEAAABICgEAgDWxebW5SAoBAABAUggAAKyJNYXmIikEAAAASSEAALAmkkJzkRQCAACApBAAAFgTQaG5SAoBAABAUggAAKyJNYXmYlAIAAAsyWDzalMxfQwAAACSQgAAYE1Opo9NRVIIAABwjZw6dUr9+/dXQECAgoKCNGjQIOXk5Fy0/v79+2Wz2Uo8Fi9e7KpX0veLFi0qU99ICgEAgCVZcU1h//79dfToUa1atUqFhYVKSEjQkCFDtHDhwhLr16lTR0ePHnUre+eddzRt2jR169bNrXzOnDnq2rWr63NQUFCZ+sagEAAA4BrYuXOnVqxYoY0bN6pVq1aSpNdff1333HOPXnnlFYWHhxc7x8vLS6GhoW5lS5Ys0YMPPih/f3+38qCgoGJ1y4LpYwAAYEmG0/DY4QkpKSkKCgpyDQglKSYmRna7XevXry9VG5s2bVJqaqoGDRpU7LunnnpKNWrUUJs2bTR79uwyJ6kkhQAAABfIz89Xfn6+W5nD4ZDD4bjiNtPT0xUcHOxW5u3trWrVqik9Pb1Ubbz33ntq3Lix2rZt61Y+efJk3XXXXfLz89PKlSs1dOhQ5eTk6Jlnnil1/0gKAQCAJXkyKUxOTlZgYKDbkZycXGI/xowZc9GXQc4fu3btuur7PXPmjBYuXFhiSjhu3Di1a9dOt956q5577jmNHj1a06ZNK1P7JIUAAMCSnB580SQpKUmJiYluZRdLCUeOHKmBAwdesr369esrNDRUx44dcys/d+6cTp06Vaq1gB999JHy8vI0YMCAy9aNiorSlClTlJ+fX+p0k0EhAADABcoyVVyzZk3VrFnzsvWio6OVmZmpTZs2qWXLlpKkNWvWyOl0Kioq6rLnv/fee/rTn/5UqmulpqaqatWqZZruZlAIAAAsyWq/fdy4cWN17dpVgwcP1qxZs1RYWKhhw4YpLi7O9ebx4cOH1blzZ82fP19t2rRxnbtnzx598803+vzzz4u1u2zZMmVkZOj222+Xr6+vVq1apRdffFGjRo0qU/8YFAIAAFwj77//voYNG6bOnTvLbrerd+/emjFjhuv7wsJCpaWlKS8vz+282bNnq3bt2urSpUuxNn18fDRz5kyNGDFChmGoYcOGevXVVzV48OAy9c1mVJCdH79tcVt5dwGAh2TtyC3vLgDwkO6FaeV27QHjjl6+0hWaPyXMY21XVLx9DAAAAKaPAQCANTkttqawoiMpBAAAAEkhAACwJqu9fVzRMSgEAACWVEHelb1uMH0MAAAAkkIAAGBNhtNZ3l24rpAUAgAAgKQQAABYE1vSmIukEAAAACSFAADAmnj72FwkhQAAACApBAAA1sTm1eZiUAgAACyJQaG5mD4GAAAASSEAALAmp8Hm1WYiKQQAAABJIQAAsCbWFJqLpBAAAAAkhQAAwJpICs1FUggAAACSQgAAYE38zJ25GBQCAABLcjrZksZMTB8DAACApBAAAFgTL5qYi6QQAAAAJIUAAMCaDH7mzlQkhQAAACApBAAA1sSaQnORFAIAAICkEAAAWBNJobkYFAIAAEty8qKJqZg+BgAAAEkhAACwJqaPzUVSCAAAAJJCAABgTYaTNYVmIikEAAAASSEAALAm1hSai6QQAAAAJIUAAMCaDPYpNBWDQgAAYElOpo9NxfQxAAAASAoBAIA1sSWNuUgKAQAAQFIIAACsiS1pzEVSCAAAAJJCAABgTWxJYy6SQgAAgGvkr3/9q9q2bSs/Pz8FBQWV6hzDMDR+/HiFhYWpcuXKiomJ0e7du93qnDp1Sv3791dAQICCgoI0aNAg5eTklKlvDAoBAIAlGU7DY4enFBQUqE+fPnryySdLfc7UqVM1Y8YMzZo1S+vXr1eVKlUUGxurs2fPuur0799f27dv16pVq/TZZ5/pm2++0ZAhQ8rUN5thGBVilea3LW4r7y4A8JCsHbnl3QUAHtK9MK3crt3+3q891va3yzp4rG1Jmjt3roYPH67MzMxL1jMMQ+Hh4Ro5cqRGjRolScrKylJISIjmzp2ruLg47dy5U02aNNHGjRvVqlUrSdKKFSt0zz336NChQwoPDy9Vn0gKAQAALpCfn6/s7Gy3Iz8//5r3Y9++fUpPT1dMTIyrLDAwUFFRUUpJSZEkpaSkKCgoyDUglKSYmBjZ7XatX7++1NeqMC+atP9xc3l3AddIfn6+kpOTlZSUJIfDUd7dAWAi/v3GteTJNG/ixImaNGmSW9mECRM0ceJEj12zJOnp6ZKkkJAQt/KQkBDXd+np6QoODnb73tvbW9WqVXPVKQ2SQlxz+fn5mjRpUrn8Ly4AnsW/37heJCUlKSsry+1ISkoqse6YMWNks9kueezatesa30HZVZikEAAAoKJwOBylTrtHjhypgQMHXrJO/fr1r6gfoaGhkqSMjAyFhYW5yjMyMhQZGemqc+zYMbfzzp07p1OnTrnOLw0GhQAAAFehZs2aqlmzpkfajoiIUGhoqFavXu0aBGZnZ2v9+vWuN5ijo6OVmZmpTZs2qWXLlpKkNWvWyOl0KioqqtTXYvoYAADgGjl48KBSU1N18OBBFRUVKTU1VampqW57Ct58881asmSJJMlms2n48OF64YUX9Omnn2rr1q0aMGCAwsPD1atXL0lS48aN1bVrVw0ePFgbNmzQd999p2HDhikuLq7Ubx5LJIUoBw6HQxMmTGAROnAd4t9v4NLGjx+vefPmuT7feuutkqSvvvpKHTt2lCSlpaUpKyvLVWf06NHKzc3VkCFDlJmZqfbt22vFihXy9fV11Xn//fc1bNgwde7cWXa7Xb1799aMGTPK1LcKs08hAAAAyg/TxwAAAGBQCAAAAAaFAAAAEINCAAAAiEEhAAAAxKAQAAAAYlCIa+T48eMKDQ3Viy++6Cpbt26dKlWqpNWrV5djzwBcrfnz56t69erFfu+4V69eeuSRR8qpVwDKin0Kcc18/vnn6tWrl9atW6dGjRopMjJSPXv21KuvvlreXQNwFc6cOaOwsDD94x//UJ8+fSRJx44dU61atbRy5Up16tSpnHsIoDQYFOKaeuqpp/Tll1+qVatW2rp1qzZu3MgvHwDXgaFDh2r//v36/PPPJUmvvvqqZs6cqT179shms5Vz7wCUBoNCXFNnzpxR06ZN9csvv2jTpk1q1qxZeXcJgAl++OEHtW7dWgcOHFCtWrXUvHlz9enTR+PGjSvvrgEoJdYU4prau3evjhw5IqfTqf3795d3dwCY5NZbb1WLFi00f/58bdq0Sdu3b9fAgQPLu1sAyoCkENdMQUGB2rRpo8jISDVq1EjTp0/X1q1bFRwcXN5dA2CCt956S9OnT9fdd9+t3bt364svvijvLgEoAwaFuGaeffZZffTRR/rxxx/l7++vDh06KDAwUJ999ll5dw2ACbKyshQeHq5z585p/vz56tu3b3l3CUAZMH2Ma2Lt2rWaPn26FixYoICAANntdi1YsED/+c9/9NZbb5V39wCYIDAwUL1795a/v7969epV3t0BUEYkhQAA03Tu3Fm33HKLZsyYUd5dAVBGDAoBAFft9OnTWrt2rR544AHt2LFDjRo1Ku8uASgj7/LuAADA+m699VadPn1aL7/8MgNCwKJICgEAAMCLJgAAAGBQCAAAADEoBAAAgBgUAgAAQAwKAQAAIAaFAAAAEINCAAAAiEEhAAAAxKAQAAAAkv4/lkZzD18aUScAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":[],"metadata":{"id":"OfAvaY05a96D"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/correlation_data.csv b/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/correlation_data.csv new file mode 100644 index 0000000..09a0e62 --- /dev/null +++ b/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/correlation_data.csv @@ -0,0 +1,151 @@ +x,y +54.96714153011233,139.92278232873957 +48.61735698828815,125.00787456569013 +56.47688538100692,134.3919662367324 +65.23029856408026,165.3982833818107 +47.658466252766644,122.07689036490342 +47.6586304305082,112.00306189600681 +65.79212815507391,183.13806549913232 +57.67434729152909,148.9241974379406 +45.30525614065048,101.35010537959971 +55.42560043585965,145.12953717598742 +45.365823071875376,103.66774097741524 +45.34270246429743,121.22760219816809 +52.41962271566034,142.6350125792249 +30.86719755342202,68.96117070003795 +32.75082167486967,91.51081547961738 +44.37712470759027,115.07062103834066 +39.87168879665576,107.8998235915843 +53.142473325952736,151.82411314142132 +40.91975924478789,99.84551695194102 +35.87696298664709,82.15504582304281 +64.65648768921554,152.7460749267836 +47.74223699513465,111.19748963818223 +50.67528204687924,125.91718802305705 +35.75251813786544,92.79281509283003 +44.556172754748175,114.15733988017062 +51.10922589709866,136.0448972331069 +38.490064225776976,96.3551794832215 +53.75698018345672,148.92779123021498 +43.99361310081195,107.33746441965032 +47.083062502067236,144.90934792106427 +43.98293387770603,116.21400817191515 +68.52278184508938,162.73537904856065 +49.86502775262066,113.95364440094053 +39.422890710440996,103.38195092853434 +58.225449121031886,143.3289949493212 +37.791563500289776,101.61891369164536 +52.08863595004755,134.95396612085435 +30.403298761202244,75.27995777643689 +36.71813951101569,83.32741159685519 +51.96861235869123,114.77305864986944 +57.38466579995411,138.99651497921505 +51.7136828118997,137.848194972984 +48.843517176117594,124.24973038159602 +46.98896304410711,105.01501982314788 +35.214780096325725,89.76875949932614 +42.801557916052914,110.85706858742064 +45.393612290402125,104.64545636399399 +60.57122226218915,152.96530671492818 +53.43618289568462,134.17254442367152 +32.36959844637266,69.49429313762542 +53.24083969394795,136.67997283835268 +46.149177195836835,120.98078825327444 +43.23077999694041,118.9074624241038 +56.11676288840868,150.8299277413707 +60.30999522495951,136.99829438282785 +59.31280119116199,138.90375257875374 +41.607824767773614,109.16991459152064 +46.907876241487855,122.40755011284173 +53.31263431403564,138.43206264814958 +59.75545127122359,187.9159430846062 +45.2082576215471,118.72954916079941 +48.14341023336183,131.71418198521056 +38.93665025993972,106.88164328478132 +38.037933759193294,101.60874691104121 +58.125258223941984,142.1604531134515 +63.56240028570823,166.49569291920324 +49.27989878419666,115.47149481511593 +60.03532897892024,147.7201363799005 +53.61636025047634,129.1872651478998 +43.54880245394876,109.69074752873512 +53.61395605508414,157.18147580444543 +65.38036566465969,144.77826223573175 +49.64173960890049,130.96695092599634 +65.64643655814007,147.98893268345364 +23.802548959102555,54.78705373986205 +58.21902504375224,156.43706857905426 +50.870470682381715,127.81897689690892 +47.009926495341325,106.74736845906025 +50.91760776535502,120.14098232078788 +30.124310853991073,82.10675462432444 +47.80328112162488,112.20453648689083 +53.57112571511746,136.0924001836134 +64.77894044741517,162.40306951757606 +44.81729781726352,105.52724106710063 +41.91506397106812,126.22710082092357 +44.982429564154636,118.7952641335667 +59.15402117702074,127.63362707597578 +53.287511096596845,135.08332088918638 +44.70239796232961,105.13813025814015 +55.13267433113356,146.35601917579612 +50.9707754934804,119.501731349374 +59.68644990532889,148.06876034865323 +42.979469061226474,112.49854544287075 +46.723378534022316,125.465998276757 +46.078918468678424,103.19433210113829 +35.364850518678814,85.06711393828755 +52.96120277064576,127.65355381500484 +52.610552721798896,124.99308947876013 +50.05113456642461,142.78237881887247 +47.65412866624853,123.18513877523088 +35.84629257949586,77.0068919053892 +45.79354677234641,123.66248640141379 +46.572854834732304,137.6536990569571 +41.97722730778381,115.26772087497099 +48.387142883339905,105.77415754880963 +54.040508568145384,130.25893069170093 +68.8618590121053,184.82375902212948 +51.74577812831839,122.28775066460818 +52.57550390722764,135.87695404953138 +49.25554084233833,130.8851926401392 +30.812287847009586,67.76141490174314 +49.73486124550783,123.74189955315157 +50.60230209941027,94.09308184783495 +74.63242112485287,176.33717639878927 +48.076390352188774,117.66529436654034 +53.015473423336125,120.06085173869182 +49.65288230294757,140.45631879668528 +38.31321962380468,81.48163527990538 +61.42822814515021,149.17012549590567 +57.519330326867745,145.10573159003027 +57.910319470430466,159.1885315667373 +40.906125452052606,87.90669211833712 +64.02794310936099,171.70149529495208 +35.98148937207719,90.05605404038884 +55.868570938002705,129.85634083452723 +71.90455625809979,184.38242538788217 +40.09463674869312,102.2271888274675 +44.33702270397228,104.84038798834275 +50.99651365087641,128.1893049770912 +44.96524345883801,108.55997267847742 +34.493365689338674,87.36858767585916 +50.68562974806027,133.33538111536114 +39.37696286273895,114.30257531830088 +54.73592430635182,124.46165577761106 +40.80575765766197,123.34472789071759 +65.4993440501754,144.22748213021347 +42.16746707663763,103.90081674123823 +46.77938483794324,122.83163415970387 +58.135172173696695,148.14784911159208 +37.69135683566045,88.00139689094519 +52.27459934604129,128.6052758615305 +63.07142754282428,152.74855951047238 +33.92516765438772,78.9192715665272 +51.84633858532304,138.11186743351786 +52.598827942484235,135.06722471586107 +57.8182287177731,137.61647584182623 +37.63049289121918,103.07223098238045 +36.795433869157236,95.06157988165918 +55.21941565616898,146.17716032881202 +52.96984673233186,138.72090525006578 diff --git a/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/requirement.txt b/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/requirement.txt new file mode 100644 index 0000000..054e1d2 --- /dev/null +++ b/contrib/machine-learning/Correlation Tests (Pearson Correlation Coefficient,Spearman's Rank Correlation Coefficient)/requirement.txt @@ -0,0 +1,4 @@ +here are the library which i imported-> +numpy==1.21.0 +pandas==1.3.0 +scikit-learn==0.24.2