Update Tree-Traversal.md

pull/1224/head
Ramya Korupolu 2024-06-21 16:48:53 +05:30 zatwierdzone przez GitHub
rodzic 15bc5c31a8
commit c6814da27f
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 14 dodań i 1 usunięć

Wyświetl plik

@ -4,14 +4,21 @@ Tree Traversal refers to the process of visiting or accessing each node of the t
A Tree Data Structure can be traversed in following ways:
- **Level Order Traversal or Breadth First Search or BFS**
- **Level Order Traversal or Breadth First Search or BFS**
- **Depth First Search or DFS**
- Inorder Traversal
- Preorder Traversal
- Postorder Traversal
![Tree Traversal](images/traversal.png)
## Binary Tree Structure
Before diving into traversal techniques, let's define a simple binary tree node structure:
![Binary Tree](images/binarytree.png)
```python
class Node:
def __init__(self, key):
@ -85,6 +92,8 @@ In this traversal method, the left subtree is visited first, then the root and l
`Note :` If a binary search tree is traversed in-order, the output will produce sorted key values in an ascending order.
![Inorder](images/inorder-traversal.png)
**The order:** Left -> Root -> Right
### Algorithm
@ -116,6 +125,8 @@ def printInorder(root):
In this traversal method, the root node is visited first, then the left subtree and finally the right subtree.
![preorder](images/preorder-traversal.png)
**The order:** Root -> Left -> Right
### Algorithm
@ -146,6 +157,8 @@ def printPreorder(root):
In this traversal method, the root node is visited last, hence the name. First we traverse the left subtree, then the right subtree and finally the root node.
![postorder](images/postorder-traversal.png)
**The order:** Left -> Right -> Root
### Algorithm