kopia lustrzana https://github.com/animator/learn-python
Update dynamic-programming.md
rodzic
7b123e505f
commit
bd2635bc6e
|
@ -234,3 +234,192 @@ print("Length of lis is", lis(arr))
|
||||||
## Complexity Analysis
|
## Complexity Analysis
|
||||||
- **Time Complexity**: O(n * n) for both approaches, where n is the length of the array.
|
- **Time Complexity**: O(n * n) for both approaches, where n is the length of the array.
|
||||||
- **Space Complexity**: O(n * n) for the memoization table in Top-Down Approach, O(n) in Bottom-Up Approach.
|
- **Space Complexity**: O(n * n) for the memoization table in Top-Down Approach, O(n) in Bottom-Up Approach.
|
||||||
|
|
||||||
|
# 5. String Edit Distance
|
||||||
|
|
||||||
|
The String Edit Distance algorithm calculates the minimum number of operations (insertions, deletions, or substitutions) required to convert one string into another.
|
||||||
|
|
||||||
|
**Algorithm Overview:**
|
||||||
|
- **Base Cases:** If one string is empty, the edit distance is the length of the other string.
|
||||||
|
- **Memoization:** Store the results of previously computed edit distances to avoid redundant computations.
|
||||||
|
- **Recurrence Relation:** Compute the edit distance by considering insertion, deletion, and substitution operations.
|
||||||
|
|
||||||
|
## String Edit Distance Code in Python (Top-Down Approach with Memoization)
|
||||||
|
```python
|
||||||
|
def edit_distance(str1, str2, memo={}):
|
||||||
|
m, n = len(str1), len(str2)
|
||||||
|
if (m, n) in memo:
|
||||||
|
return memo[(m, n)]
|
||||||
|
if m == 0:
|
||||||
|
return n
|
||||||
|
if n == 0:
|
||||||
|
return m
|
||||||
|
if str1[m - 1] == str2[n - 1]:
|
||||||
|
memo[(m, n)] = edit_distance(str1[:m-1], str2[:n-1], memo)
|
||||||
|
else:
|
||||||
|
memo[(m, n)] = 1 + min(edit_distance(str1, str2[:n-1], memo), # Insert
|
||||||
|
edit_distance(str1[:m-1], str2, memo), # Remove
|
||||||
|
edit_distance(str1[:m-1], str2[:n-1], memo)) # Replace
|
||||||
|
return memo[(m, n)]
|
||||||
|
|
||||||
|
str1 = "sunday"
|
||||||
|
str2 = "saturday"
|
||||||
|
print(f"Edit Distance between '{str1}' and '{str2}' is {edit_distance(str1, str2)}.")
|
||||||
|
# Output: Edit Distance between 'sunday' and 'saturday' is 3.
|
||||||
|
```
|
||||||
|
## String Edit Distance Code in Python (Bottom-Up Approach)
|
||||||
|
```python
|
||||||
|
def edit_distance(str1, str2):
|
||||||
|
m, n = len(str1), len(str2)
|
||||||
|
dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
|
||||||
|
|
||||||
|
for i in range(m + 1):
|
||||||
|
for j in range(n + 1):
|
||||||
|
if i == 0:
|
||||||
|
dp[i][j] = j
|
||||||
|
elif j == 0:
|
||||||
|
dp[i][j] = i
|
||||||
|
elif str1[i - 1] == str2[j - 1]:
|
||||||
|
dp[i][j] = dp[i - 1][j - 1]
|
||||||
|
else:
|
||||||
|
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
|
||||||
|
|
||||||
|
return dp[m][n]
|
||||||
|
|
||||||
|
str1 = "sunday"
|
||||||
|
str2 = "saturday"
|
||||||
|
print(f"Edit Distance between '{str1}' and '{str2}' is {edit_distance(str1, str2)}.")
|
||||||
|
# Output: Edit Distance between 'sunday' and 'saturday' is 3.
|
||||||
|
```
|
||||||
|
## **Complexity Analysis:**
|
||||||
|
- **Time Complexity:** O(m * n) where m and n are the lengths of string 1 and string 2 respectively
|
||||||
|
- **Space Complexity:** O(m * n) for both top-down and bottom-up approaches
|
||||||
|
|
||||||
|
|
||||||
|
# 6. Matrix Chain Multiplication
|
||||||
|
|
||||||
|
The Matrix Chain Multiplication finds the optimal way to multiply a sequence of matrices to minimize the number of scalar multiplications.
|
||||||
|
|
||||||
|
**Algorithm Overview:**
|
||||||
|
- **Base Cases:** The cost of multiplying one matrix is zero.
|
||||||
|
- **Memoization:** Store the results of previously computed matrix chain orders to avoid redundant computations.
|
||||||
|
- **Recurrence Relation:** Compute the optimal cost by splitting the product at different points and choosing the minimum cost.
|
||||||
|
|
||||||
|
## Matrix Chain Multiplication Code in Python (Top-Down Approach with Memoization)
|
||||||
|
```python
|
||||||
|
def matrix_chain_order(p, memo={}):
|
||||||
|
n = len(p) - 1
|
||||||
|
def compute_cost(i, j):
|
||||||
|
if (i, j) in memo:
|
||||||
|
return memo[(i, j)]
|
||||||
|
if i == j:
|
||||||
|
return 0
|
||||||
|
memo[(i, j)] = float('inf')
|
||||||
|
for k in range(i, j):
|
||||||
|
q = compute_cost(i, k) + compute_cost(k + 1, j) + p[i - 1] * p[k] * p[j]
|
||||||
|
if q < memo[(i, j)]:
|
||||||
|
memo[(i, j)] = q
|
||||||
|
return memo[(i, j)]
|
||||||
|
return compute_cost(1, n)
|
||||||
|
|
||||||
|
p = [1, 2, 3, 4]
|
||||||
|
print(f"Minimum number of multiplications is {matrix_chain_order(p)}.")
|
||||||
|
# Output: Minimum number of multiplications is 18.
|
||||||
|
```
|
||||||
|
## Matrix Chain Multiplication Code in Python (Bottom-Up Approach)
|
||||||
|
```python
|
||||||
|
def matrix_chain_order(p):
|
||||||
|
n = len(p) - 1
|
||||||
|
m = [[0 for _ in range(n)] for _ in range(n)]
|
||||||
|
|
||||||
|
for L in range(2, n + 1):
|
||||||
|
for i in range(n - L + 1):
|
||||||
|
j = i + L - 1
|
||||||
|
m[i][j] = float('inf')
|
||||||
|
for k in range(i, j):
|
||||||
|
q = m[i][k] + m[k + 1][j] + p[i] * p[k + 1] * p[j + 1]
|
||||||
|
if q < m[i][j]:
|
||||||
|
m[i][j] = q
|
||||||
|
|
||||||
|
return m[0][n - 1]
|
||||||
|
|
||||||
|
p = [1, 2, 3, 4]
|
||||||
|
print(f"Minimum number of multiplications is {matrix_chain_order(p)}.")
|
||||||
|
# Output: Minimum number of multiplications is 18.
|
||||||
|
```
|
||||||
|
## **Complexity Analysis:**
|
||||||
|
- **Time Complexity:** O(n^3) where n is the number of matrices in the chain. For an `array p` of dimensions representing the matrices such that the `i-th matrix` has dimensions `p[i-1] x p[i]`, n is `len(p) - 1`
|
||||||
|
- **Space Complexity:** O(n^2) for both top-down and bottom-up approaches
|
||||||
|
|
||||||
|
|
||||||
|
# 7. Optimal Binary Search Tree
|
||||||
|
|
||||||
|
The Matrix Chain Multiplication finds the optimal way to multiply a sequence of matrices to minimize the number of scalar multiplications.
|
||||||
|
|
||||||
|
**Algorithm Overview:**
|
||||||
|
- **Base Cases:** The cost of a single key is its frequency.
|
||||||
|
- **Memoization:** Store the results of previously computed subproblems to avoid redundant computations.
|
||||||
|
- **Recurrence Relation:** Compute the optimal cost by trying each key as the root and choosing the minimum cost.
|
||||||
|
|
||||||
|
## Optimal Binary Search Tree Code in Python (Top-Down Approach with Memoization)
|
||||||
|
```python
|
||||||
|
def optimal_bst(keys, freq, memo={}):
|
||||||
|
n = len(keys)
|
||||||
|
def compute_cost(i, j):
|
||||||
|
if (i, j) in memo:
|
||||||
|
return memo[(i, j)]
|
||||||
|
if i > j:
|
||||||
|
return 0
|
||||||
|
if i == j:
|
||||||
|
return freq[i]
|
||||||
|
memo[(i, j)] = float('inf')
|
||||||
|
total_freq = sum(freq[i:j+1])
|
||||||
|
for r in range(i, j + 1):
|
||||||
|
cost = (compute_cost(i, r - 1) +
|
||||||
|
compute_cost(r + 1, j) +
|
||||||
|
total_freq)
|
||||||
|
if cost < memo[(i, j)]:
|
||||||
|
memo[(i, j)] = cost
|
||||||
|
return memo[(i, j)]
|
||||||
|
return compute_cost(0, n - 1)
|
||||||
|
|
||||||
|
keys = [10, 12, 20]
|
||||||
|
freq = [34, 8, 50]
|
||||||
|
print(f"Cost of Optimal BST is {optimal_bst(keys, freq)}.")
|
||||||
|
# Output: Cost of Optimal BST is 142.
|
||||||
|
```
|
||||||
|
## Optimal Binary Search Tree Code in Python (Bottom-Up Approach)
|
||||||
|
```python
|
||||||
|
def optimal_bst(keys, freq):
|
||||||
|
n = len(keys)
|
||||||
|
cost = [[0 for x in range(n)] for y in range(n)]
|
||||||
|
|
||||||
|
for i in range(n):
|
||||||
|
cost[i][i] = freq[i]
|
||||||
|
|
||||||
|
for L in range(2, n + 1):
|
||||||
|
for i in range(n - L + 1):
|
||||||
|
j = i + L - 1
|
||||||
|
cost[i][j] = float('inf')
|
||||||
|
total_freq = sum(freq[i:j+1])
|
||||||
|
for r in range(i, j + 1):
|
||||||
|
c = (cost[i][r - 1] if r > i else 0) + \
|
||||||
|
(cost[r + 1][j] if r < j else 0) + \
|
||||||
|
total_freq
|
||||||
|
if c < cost[i][j]:
|
||||||
|
cost[i][j] = c
|
||||||
|
|
||||||
|
return cost[0][n - 1]
|
||||||
|
|
||||||
|
keys = [10, 12, 20]
|
||||||
|
freq = [34, 8, 50]
|
||||||
|
print(f"Cost of Optimal BST is {optimal_bst(keys, freq)}.")
|
||||||
|
# Output: Cost of Optimal BST is 142.
|
||||||
|
```
|
||||||
|
## **Complexity Analysis:**
|
||||||
|
- **Time Complexity:** O(n^3) where n is the number of keys in the binary search tree.
|
||||||
|
- **Space Complexity:** O(n^2) for both top-down and bottom-up approaches
|
||||||
|
|
||||||
|
</br>
|
||||||
|
<hr>
|
||||||
|
</br>
|
||||||
|
|
Ładowanie…
Reference in New Issue