Update Naive_Bayes_Classifiers.md

pull/1210/head
Divyanshi 2024-06-19 15:09:16 +05:30 zatwierdzone przez GitHub
rodzic 1637c65fe1
commit 9d18d41bb8
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 9 dodań i 0 usunięć

Wyświetl plik

@ -113,6 +113,9 @@ Typically used for discrete features, especially for text (or document) classifi
* Formula: The likelihood of the features given the class is computed using the multinomial distribution formula:
![img_3.png](img_3.png)
$$
P(x_k | C) = \frac{1}{\sqrt{2\pi\sigma_C^2}} \exp\left(-\frac{(x_k - \mu_C)^2}{2\sigma_C^2}\right)
$$
where n(c,xi) is the count of feature 𝑥𝑖 in class 𝐶, N(C) is the total count of all features in class C, n is the number of features, and 𝛼 is a smoothing parameter.
@ -122,6 +125,12 @@ Used for binary/boolean features, where features represent binary occurrences (e
* Assumption: Features are binary (e.g., word presence/absence).
* Formula: The likelihood of the features given the class is computed using the Bernoulli distribution formula:
$$
P(C_k | x) = P(C_k) \prod_{i=1}^{n} P(x_i | C_k)^{x_i} (1 - P(x_i | C_k))^{(1 - x_i)}
$$
![img_4.png](img_4.png)
where 𝑝(𝑖,𝐶) is the probability of feature 𝑥𝑖 being 1 in class C.